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Abstract: The cornerstone and heart of financial market risk management is risk measurement. The size of 

market risk and the possibility of a risk occurrence must be determined before issuing risk analysis reports, 

hedging or diversifying to transfer risks, or setting and changing risk capital limitations. This is important when 

making decisions about risk management, portfolio optimization, and asset allocation. This study suggests a 

combination of risk measurement: 𝛼𝜌1(𝑋) + (1 − 𝛼)𝜌2(𝑋), which takes into account all the traits of various 

measurement approaches, depicts the traits of risk from various angles, and provides a thorough index for 

financial institutions to use when calculating risk. Meanwhile, convex combinations of multi-class risk measures 

also provide a flexible way to consider investors' risk appetite. 
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I. Introduction 

One of the most important ideas in risk management is the convex portfolio. Convex combination of 

various risk metrics might result in a more thorough and precise risk assessment [1]. Combined risk 

measurement: 𝛼𝜌1(𝑋) + (1 − 𝛼)𝜌2(𝑋) comprehensively considers the characteristics of different types of 

measurement, depicts the characteristics of risk in multiple aspects, and gives a comprehensive index for 

financial institutions when measuring risk. And set the parameters according to the actual financial market 

fluctuations [2]. By adjusting the weights of different risk measures, risk management strategies can be tailored 

to the risk tolerance and preferences of specific investors. This helps investors balance risk and return more 

effectively and create a personalized investment plan based on their goals and constraints. The study of 

combinatorial measures can promote the development of risk measurement theory. By exploring the convex 

combination relationship between different risk measures, we can deeply understand the nature and 

characteristics of risk. This is important for improving existing risk measurement methods, proposing new risk 

measurement frameworks, and deepening the understanding of core concepts of risk management. 

In conclusion, the research on convex combination of risk measurement is of great significance for risk 

management, investment decision-making and the development of risk theory. It helps investors assess and 

comprehend risks more comprehensively, optimize portfolio allocation, and develop risk management strategies 

that adapt to individual needs. In addition, the research on convex combination also provides further exploration 

and development direction for risk measurement theory. 

 

II. Verification of the feasibility of combined measures 

2.1Numerical example of expected shortfall and information entropy-standard deviation combination 

measure 
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Under normal circumstances, the yield of financial assets is a leptokurtic heavy tail distribution, which cannot 

follow with the normal distribution that is usually used. Some unexpected events with greater harm but lower 

probability may cause huge losses. Understanding the probability distribution of extreme events is conducive to 

avoiding risks. The extreme value theory model considers the distribution of the tail values of the sequence and 

fits the data in the sequence that exceeds a given threshold, which is consistent with the concept of managing the 

risk of low-frequency high-hazard events. 

 

2.2   VAR and ES based on extreme value models 

The generalized Pareto distribution was proposed by Pikands [3] in 1975, and its distribution function has two 

important parameters 𝜉 and 𝜎, 𝜉 is the shape parameter, 𝜎 is the scale parameter [4] ,𝑌 = 𝑋 − 𝑢, 𝑢 is the 

given threshold, and the model is as follows: 

𝐹𝑢(𝑦) = 𝑃(𝑋 − 𝑢 ≤ 𝑦|𝑋 > 𝑢),0 ≤ 𝑦 ≤ 𝑥𝐹 − 𝑢, 

where 𝑦 = 𝑋 − 𝑢  represents the portion that exceeds the threshold and 𝑥𝐹  is the right endpoint of the 

distribution function 𝐹. 𝐹𝑢(𝑦) can [5] also be written as 

𝐹𝑢(𝑦) =
𝐹(𝑢+𝑦)−𝐹(𝑢)

1−𝐹(𝑢)
=

𝐹(𝑋)−𝐹(𝑢)

1−𝐹(𝑢)
. 

 

Using the Pikands-Balkama-deHaan theorem, the excess number distribution can be fitted by a generalized 

Pareto distribution. Thus the distribution of the tail data of the sequence can be written as 

𝐹(𝑥) = (1 − 𝐹(𝑢))𝐺𝜉,𝜎(𝑦) + 𝐹(𝑢), 

𝐹(𝑢)can be replaced by a frequency of the number of samples less than the threshold, combined with the 

generalized Pareto distribution function to obtain 

𝐹(𝑥) = 1 −
𝑁𝑢

𝑛
*1 + 𝜉 (

𝑥−𝑢

𝜎
)+

−𝜉

. 

 

In the measure of risk, the concept of VaR [6] is that given the confidence level, the maximum loss that a certain 

asset portfolio may occur in the future period of time, using extreme value theory to estimate VaR is a very 

effective method, when [7] the given probability is 𝑝, 𝑉𝑎𝑅𝑝 = 𝐹−1(𝑝), substitute 𝐹(𝑥) to get 

𝑉𝑎𝑅𝑝 = 𝑢 +
𝜎

𝜉
[(

𝑛

𝑁𝑢
(1 − 𝑝))

−𝜉

− 1]. 

 

The part of the loss level that exceeds VaR is measured by the expected shortfall model, which is as follows 

𝐸𝑆𝑝 = 𝐸(𝑋|𝑋 ≥ 𝑉𝑎𝑅𝑝). 

 

Expected shortfall formula under the POT model are given by [8] 

𝐸𝑆𝑝 =
𝑉𝑎𝑅𝑝

1−𝜉
+

𝜎−𝜉𝑢

1−𝜉
. 

2.3 Data processing 

This paper selects the daily closing price 𝑝𝑡  of Shaanxi coal stocks, a total of 1759 data, and takes the data 

logarithmic to obtain a new series, according to the yield formula: 

𝑟𝑡 = 𝑙𝑛(𝑝𝑡) − 𝑙𝑛(𝑝𝑡−1). 
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The yield series of the stock is calculated. When studying VaR and CVaR in this paper, the yield series is taken 

as the opposite number for ease of understanding. First, analyze the distribution of the data, the histogram is 

shown in the figure below: 

 

 

 

Through the histogram, it can be seen that the sequence does show the characteristics of spikes and thick tails, 

with a kurtosis value of 5.018247, more than 3, and a skewness of −0.104689, which has negative skew 

characteristics, which also indicates that the data do not conform to the normal distribution. 

 

2.4 Thresholds 

The yield series presents the characteristics of peak thick tail, focusing on the tail risk of the yield 

series, which is the basis for studying the risk measurement of extreme value theory. To confirm the rationality 

of applying extreme value theory instead of normal distribution to study the yield of stock index futures, it is 

necessary to test whether the yield series is normally distributed. Jarque_Bera test [9] value is 301.7535, which 

means that the tail data of the yield does not conform to the normal distribution, and it is reasonable to fit it with 

the extreme value distribution model. 

 

The threshold for determining the sequence can be taken using a Hill plot, as shown in the following figure: 

 

 

 

According to the theory of Reiss and Thomas, the tail data of the sequence will decrease and eventually stabilize 
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as the amount of data increases [10]. By finding the end of the line fluctuating in the Hill plot, you can 

determine the number of data that exceeds the threshold. From the figure, it can be determined that after the 

108th data, the Hill curve gradually stabilizes. The corresponding threshold is 0.034606, and there are 107 data 

exceeding the threshold. 

 

2.5  GPD parameter estimation and tail risk measurement 

 

In the case of threshold determination, the shape parameters and scale parameters in the POT model can be 

estimated using the sample data. Using the maximum likelihood estimation method, the parameter estimation is 

performed using the MATLAB program, and the results are as follows: 

 

Parameter Estimates 

Shape parameters 𝜉 −0.2476 

Scale parameters �̂� 0.0240 

Fixed threshold𝑢 0.0346 

 

Through the previous POT model has obtained the formula of VaR and expected shortfall, substitute the shape 

parameter 𝜉  and scale parameter 𝜎  obtained by the maximum likelihood estimation method, and the 

determined threshold 𝑢, you can determine the specific VaR and expected shortfall size at a certain confidence 

level, the list is as follows: 

 

Confidence level 𝑉𝑎𝑅 𝐸𝑆 

0.99 0.069548 0.081850 

0.975 0.053761 0.069196 

0.95 0.039199 0.057524 

 

From the data in the table, it can be seen that the value of the expected shortfall is greater than the value at risk, 

which is also consistent with the theoretical basis. 

 

2.6   Information entropy-standard deviation model 

Shannon, the father of information theory in the 40s of the 20th century, introduced it into the category of 

information theory and named information entropy to measure the average amount of information from sources. 

From this information, entropy [11] was also introduced into the ranks of measuring risk, and the academic 

community began a boom in research. Information entropy is based on the amount of information. The amount 

of information is a measure of how much information it has. Because the probability of a random event 

occurring, the likelihood of an event in each state being included is also different. 

 

The model of the amount of information in the discrete state [12] is: 

𝜙(𝑝𝑖) = 𝑙𝑛𝑝𝑖, 

where 𝑋  is a discrete random variable, 𝑃(𝑋 = 𝑥𝑖) = 𝑝𝑖 , 0 ≤ 𝑝𝑖 ≤ 1(𝑖 = 1,2, . . . 𝑛) , ∑ 𝑝𝑖
𝑛
𝑖=1 = 1 .The 

information entropy of discrete event 𝑋 is obtained: 

𝐻 = −𝑘∑ 𝑝𝑖𝑙𝑛𝑝𝑖
𝑛
𝑖=1 . 



A study on the feasibility of combinatorial measures  

International Journal of Business Marketing and Management (IJBMM) Page 143 

By comparing the information entropy measure and variance, Li Yinghua believes that the variance can only 

express the degree of deviation of random variables from expectations, and cannot determine the overall change 

of random variables, while the information entropy measure is more comprehensive in the measurement of risk 

from probability, and the information entropy measure is regarded as variance information supplement proposed 

the information entropy-standard deviation model, the specific model is 𝑅(𝑋) = 𝜆𝐻𝜃(𝑋) + (1 − 𝜆)𝑆𝜃(𝑋), 

where 𝑅(𝑋) represents the risk of portfolio𝑋, 𝐻𝜃(𝑋) represents the information entropy of the portfolio in 

state, and 𝑆𝜃(𝑋) represents the standard deviation of the portfolio. 0 < 𝜆 ≤ 1,𝜆 is the risk appetite coefficient 

of the decision-maker [13]. 

 

In order to obtain the value of the information entropy measure, it is necessary to know the distribution law of 

the yield series. Since the yield distribution ranges from -10% to 10%, it is divided into 40 intervals with a range 

length of 0.5%. According to Bernoulli's law of large numbers, when the amount of data is sufficient, the 

frequency converges to probability according to probability. After calculation, the value of the information 

entropy-standard deviation model under different risk appetite conditions is obtained, as shown in the following 

table: 

 

Risk appetite 

coefficient 

Information entropy 

measure 

Standard 

Deviation 

Information entropy-standard deviation 

measure 

0.5 2.952036 0.024761 1.4883985 

0.7 2.952036 0.024761 2.0738535 

 

Using the rate of return as a random variable, the variance can be calculated after understanding the distribution, 

but the general variance can only reflect the fluctuation of the yield above and below the mean, and cannot 

reflect the overall return.  

 

Combined with information entropy measures, you can get a comprehensive picture of risk events. At the same 

time, by controlling the risk appetite coefficient, the specific meaning of the measure can be automatically 

adjusted. In the case given, the larger the risk appetite coefficient, the more the measurement results reflect the 

overall uncertainty. 

 

III. Combinatorial measure analysis 

On the basis of the known two candidate measures, the expected shortfall and the information 

entropy-standard deviation measure, the combined risk measure model is given by 

𝜌(𝑋) = 𝛼𝐸𝑆 + (1 − 𝛼)𝑅(𝑋). 

 

Using the POT model and generalized Pareto distribution in extreme value distribution theory, the risk of stock 

returns in Shaanxi coal industry in low-frequency and high-risk events was studied, which measures the average 

loss under an extreme situation. The standard deviation, as the square root of the variance, emphasizes the effect 

of positive and negative deviation on risk. The information entropy-standard deviation measure can both reflect 

the overall uncertainty of the random variable and show the degree of deviation from the mean. When selecting 

0.5parameters, decision-makers balance the size of extreme losses with the volatility of the overall risk. The 

information entropy-standard deviation measure under the expected shortfall and neutral risk appetite at the 

confidence level of 0.99 is selected, and the values of the combined measure are shown in the following table: 
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Combined 

parameter𝛼 
𝐸𝑆 

Information entropy-standard deviation 

measure 

Combined risk 

measures 

0.3 0.082107 1.149715 0.8294326 

0.5 0.082107 1.149715 0.6159110 

0.7 0.082107 1.149715 0.4023894 

 

The combination of the two candidate measures can reflect both loss and return changes as well as volatility. By 

combining expected shortfall and information entropy-standard deviation, both mean and variance can be 

considered, providing a more comprehensive risk assessment that balances the relationship between risk and 

reward. It not only looks at the possible loss of a portfolio or asset, but also considers the potential return that 

comes from this risk. This helps investors consider risk and reward to make more informed investment decisions. 

Select different parameters𝛼 to express different preferences. For the parameter level, when 0 < 𝛼 ≤ 0.5, 

financial institutions are risk-averse in decision-making, and pay more attention to the overall change and 

volatility of random variables. When 0.5 < 𝛼 ≤ 1, decision-makers prefer risk, and portfolio risk measures 

focus more on losses to be suffered in extreme events than just volatility. 
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