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Abstract : This paper intends to construct and study VaRβ [VaRα(x)] (as may be called Double VaR, short for 

DVaR) problem under uncertain distribution based on the best (or worst) criteria,studies and gives the 

characteristics of DVaR and its application analysis in the portfolio. 
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I. Concept of DVaR 

VaR as a measure of the size of the risk, its intuitive meaning is the maximum value of the loss of an 

asset or portfolio at a certain level of confidence. It is a simple and clear concept of risk,which is expressed in 

simple values, and is therefore widely used. Directly related to the accuracy of the VaR value is the future profit 

and loss distribution of the asset, which was initially met by the researchers for convenience, often assuming 

that the return on the asset was normal. Later, some scholars found that the distribution of asset income and 

normal distribution is not completely consistent, the income of the phenomenon of peak thick tail and 

fluctuating cluster, so the researchers began to use the distribution with peak thick tail characteristics to study it, 

such as t distribution, asymmetric Laplace distribution, mixed normal distribution and so on. From the results of 

the study, the effect is indeed significantly better than the normal distribution. However, the use of actual data to 

verify that the basis of this kind of distribution calculated VaR there is still some deviation. The future profit and 

loss distribution of an asset or portfolio is not accurate, and the absolutely reliable information available to 

researchers is only historical data. However, the fluctuation of the actual profit and loss data is influenced by a 

variety of market factors in the future, which may vary widely from the historical path, so the distribution 

function of the direct assumption of profit and loss is very easy to cause the deviation of the calculation result. 

Based on this consideration, this paper assumes that the collection of all possible profit and loss distributions of 

assets is  1 2, , , ,KM G G G    , where 1 2, , , ,KG G G  represents possible profit and loss distributions of 

portfolio. Obviously, we can get that the VaR value is a collection  1 2, , , ,KA VaR VaR VaR    from M 
 ,and 

thus naturally derives the distribution law problem of the VaR value. Unlike the existing dual VaR  2,VaR  

concept, this paper intends to construct and study  ( )VaR VaR x   (as may be called Double VaR, short for 

DVaR) problem under uncertain distribution based on the best (or worst) criteria. 

 For ease of understanding, the concept of DVaR is introduced through a life example. In a high school 

in a district, each grade is divided into classes, it is assumed that the third grade has twenty classes, each class 

has 100 people, each class is parallel relationship. If every student at the whole grade takes the college entrance 

examination, the content of the test paper is uniform, and the teachers in each class can only get the student 

scores of their own class, assuming that there is no way to know the scores of other classes. At this point, 

teachers can get statistics on the student achievement of their own teaching class, such as the lowest or bottom 

5\% of the student grade of the highest score.If you take down 5% of the scores of all classes and arrange them 
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in a collection of G series from one to twenty classes in class order,   G={75, 78, 77, 65, 64, 70, 79, 75, 67, 71, 

72, 71, 73, 78, 69, 68, 74, 76, 66, 67}. Take the first number 75 as an example to explain it, that is, a class of 

students have a 95% probability of higher than 75 points, the latter number is the same. Now on the collection G 

take down 5% of the digits, get 64, you can get the following conclusion: in the whole grade score in the bottom 

5% of students, at least 5% of the students score less than or equal to 64, at least 20% of the student score is 

greater than or equal to 64, that is, from the school-wide point of view, at least 0.25% of the student score is less 

than or equal to 64 points, At least 1% of the students scored 64 or more. Therefore, in the absence of teachers' 

knowledge of other class scores, through the above-mentioned processing methods, we can also obtain a general 

understanding of the score situation of the whole year. In some areas, college entrance examinations are in the 

form of volunteering before publishing scores, so students can use this method to know where their scores are in 

the whole grade by selecting different scale levels. Assuming that, based on past data, about 0.2% of the 

students in this high school cannot reach the undergraduate line each year, if a student's estimated score is 64 

points, it can be predicted that he or she can basically reach the undergraduate line. In the above example, the 

lower digits are used, if you choose the top number of digits, you can also infer from the previous data whether a 

classmate can reach the score line of a famous school. 

The above-mentioned score 64 is equivalent to the concept of DVaR that we propose, and twenty 

parallel classes are equivalent to different distributions of asset gains and losses (as mentioned above M 
 is an 

infinite set, in the case of limited distributions as an example), which is parallel to each other and have no 

priority relationship. The G collection is equivalent to the VaR value we obtain for different possible 

distributions, each of which can only get its own information and do not know anything about the other 

distributions. However, in the processing of the G collection, the DVaR, i.e. 64, in the sample, can obtain a more 

detailed understanding of the distribution of the tail segment fractions of the whole year scale with very limited 

information available. In other words, DVaR can provide us with a clearer and more complete picture of the tail 

risk of a collection of possible k-distributions, which neither VaR nor CVaR can achieve. Therefore, DVaR is an 

effective tool when dealing with practical problems where the future profit and loss distribution of assets is 

unknown. 

The example of DVaR is not only found in life, but also common in financial markets, as illustrated 

here by industry rankings. Each year, the Securities Association counts and publishes the ranking of the 

operating performance of securities companies in the previous year, and will rank the operating data and 

business performance subdivided indicators, such as net capital return, economic business income, securities 

revenue as a proportion of revenue. For each sub-index, you get a corresponding ranking of the securities 

industry. By considering each sub-index, you can get an assessment of the overall ranking of any securities 

company in the securities industry. Here by the ranking of each sub-index of the overall ranking can be regarded 

as DVaR, on the basis of the original indicators, the various indicators are considered comprehensively, using 

different indicators for multiple screening, in order to achieve the overall evaluation of brokers, in line with the 

basic idea of DVaR. 

 
Figure 1. DVaR and VaR Relationship Map 
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The relationship between DVaR and VaR is as seen from Figure 1. The intuitive implication of VaR is 

that the maximum loss that  an investor may face at a given confidence level is that, as can be seen from Figure 

1, VaR itself is extremely valuable, represents a very small value of the return, and can also be understood as a 

loss that may be possible in the worst case scenario. DVaR is based on the  uncertainty of the profit and loss 

distribution of assets or portfolios, and is based on the best (or worst) criterion by selecting a very small (or very 

large) value to DVaR for a collection of VaR values derived from different distributions. Therefore, DVaR itself 

has extreme value, using its extreme value to filter the VaR collection, in order to reduce the risk. 

 

II. Definition of DVaR 

The concept of VaR based on the indeterminate distribution is represented by VaR(x), and in order to 

facilitate differentiation and avoid conceptual confusion, the concept of DVaR presented in this paper is 

expressed as [ ( )]VaR VaR x  . 

As can be seen from the example in the previous section, the definition of ( )VaR x  is the same as that 

of a traditional VaR by definition, except that because of the uncertainty surrounding the profit and loss 

distribution of the portfolio mentioned in the previous section of this chapter, this article no longer solves it by 

assuming the profit and loss distribution of the portfolio. Instead, use only the accurate information available to 

preserve its uncertainty. x represents the price of an asset or portfolio, assuming that the profit and loss 

distribution of the asset or portfolio is F(x), then F(x) is uncertain, resulting in a random variable ( )VaR x  , 

calculated based on F(x) at a given confidence level, ( )VaR x  contains a collection of VaR values that 

correspond to different unknown distributions. Based on this, ( )VaR x  must obey a probability distribution 

G(VaR), and [ ( )]VaR VaR x   is a VaR value for the random variable ( )VaR x . Therefore, by comparing 

( )VaR x  with [ ( )]VaR VaR x   and finding that the essence is to calculate its quantite for a random variable, 

except that ( )VaR x  is calculated as the profit and loss distribution F(x) of the portfolio, [ ( )]VaR VaR x   the 

computing object is the probability distribution G(VaR) as a random variable presented in this paper. 

When we consider DVaR, i.e. [ ( )]VaR VaR x  , it is very similar in form to the form of a composite 

function, but it is fundamentally different, unlike the mapping of the compound function from real to real. As 

noted earlier, the value of VaR is uncertain due to the existence of distribution uncertainty, so you can think of 

( )VaR x  as a random variable (or an indeterminate variable), considering that it is subject to a distribution and 

is recorded as g(VaR). With the definition of VaR, DVaR can be defined as follows: 

         : ( )
( ( )) : ( )

VaR g VaR
DVaR g VaR min R p VaR dVaR


    „

…  (2.1) 

That is, the density function of VaR is integrated, and the minimum value of the integral value greater than or 

equal to the alpha is DVaR. 
Note 2.1.The problem of DVaR studied in this paper is essentially based on the corresponding problem under 

the uncertainty of distribution rather than the random meaning, and for the sake of simplicity, only the DVaR 

problem under the random meaning is considered. 

 

III. VaR and DVaR Studies Based on Distribution Uncertainty 

VaR's calculations and many portfolio optimization issues depend on the future profit and loss 

distribution of assets, but we cannot know the future price of the asset in advance and can only be estimated 

through historical data or contextual simulations. The assumption that historical data are used to fit a particular 

economic model, such as the GARCH model, is that past market behavior will recur, but changes in the future 

price of assets are influenced by a variety of market factors and are likely not to follow the historical trajectory. 

The future price estimated based on simulation may be largely influenced by individual subjective judgment. 

Therefore, with only historical observations available, a future-oriented strategy is needed to deal with possible 

uncertainties, which is the best way to deal with future uncertainties. 

In the case of a completely unknown future profit and loss distribution of the portfolio, assume that the 

collection of all possible probability distributions is M  : 
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 1 2, , , ,KM G G G     
Among them, 

1 2, , , ,KG G G  are different profit and loss distribution functions that represent the future of the 

portfolio, i.e. the elements within the collection M 
  are likely to become real profit and loss functions in the 

future of the portfolio, and the collection M 
 can be a finite set or an infinite set, and its size cannot be 

determined. 

The uncertainty of the probability distribution set M 
 makes it impossible to obtain an accurate 

distribution of the portfolio profit and loss, and therefore the exact calculation of VaR is not possible. Therefore, 

the uncertainty of M 
 needs to be addressed and the optimal strategy in uncertain situations should be 

developed. 

First, the sample obtained, i.e. historical data, is based on a more explicit revision of the M 
 to narrow 

the range of possible probability distribution. Drawing on the definition of fuzzy set by Kang and Li
[24]

, 

Zhongfei Li improved the fuzzy set based on the previous research, and defined the uncertainty of the 

Ellipsoidal-ball type: 

1 2 1

2
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Where the 
FXP P  represents the Frobenius model number, the parameters 

1 2   represent the fuzzy level, the 

sample mean is ̂  , the covariance is µΣ, nR is the closed convex set containing the random vector , M 
 

represents the set of all probability distributions . 

By defining fuzzy sets to deal with uncertainty, it avoids the model setting error that directly assumes 

the profit and loss distribution of the portfolio, and only uses the available accurate information to give the 

possible distribution range of the assets, thus determining the specific range of the future profit and loss 

distribution of the portfolio and laying the foundation for subsequent processing. 

Then develop a reasonable and effective strategy, from the fuzzy set to choose the required distribution, 

to eliminate the uncertainty of distribution. The change of confidence level under any normal distribution can be 

obtained by using the density control function, and this is taken as the selection criterion. Assuming given the 

confidence level  , the VaR of the standard normal distribution is written as  , and the density function of the 

standard normal distribution is recorded as ( )  , as to the arbitrary normal distribution ( )f  : 

 ( ) [ ( ) ( ) ( )] [ ( ) ( )] + ( )=
x x x x

f d f d f d d          
   

                  (3.1) 

[ ( ) ( )] = ( ) ( ) =
x x

f d f d      
 

    

 The value of | ( ) ( ) |f    is recorded as ( )M  , the value of ( )
x

d  

   is recorded as  , because 

( )
x

d  

  , the amount of change in the confidence level   in given x is indicated as  . That is, under 

the standard normal distribution, the probability of the portfolio loss not exceeding x is  , and under the partial 

normal distribution ( )f   the probability that the portfolio loss does not exceed x is .Given x, the investor 

wants the value of    to be as large as possible, but is not sure of the true distribution of  , and when it is 

assumed that the investor is a risk aversion, develop the following target strategy: 

 
  0

( )

[ ( ) ( )]
F

x

f D

inf f d


   


 …
  

(3.2)
 

That is, of the possible values of all the  , select the partial distribution with the least change in the confidence 

level of the fuzzy set, according to which the selection will result in the worst-case distribution, and this strategy 

is applied when the investor is a risk aversion. 

In reality, investors are not always risk-averse, such as gambling investors may be risk-averse, want to 

trade high risk for high returns, so for risk appetite investors developed the following strategies: 
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  0

( )

sup [ ( ) ( )]
F

x

f D

f d


   


 …
  

(3.3)
 

That is, from the fuzzy set to choose the most optimistic situation, the use of loss of not more than x of the 

probability of the largest distribution as a real distribution, for subsequent processing. 

Both of these selection criteria are considered for extreme situations, assuming that the investor is 

completely risk-averse or completely risk-averse, but in reality there will be risk-neutral investors, in other 

words, different investors may have different attitudes towards risk. Therefore, in order to develop a universal 

distribution selection strategy, the risk aversion coefficient   is introduced to describe the level of risk aversion. 

In conjunction with the above, the following strategies are given: 

 
    0

( ) ( )

(1 ) sup [ ( ) ( )] + [ ( ) ( )]
F F

x x

f D f D

f d inf f d
 

        
  

    …
 

(3.4)
 

nR   represents the acceptable set, risk aversion coefficient [0,1] , when 0  ,the second strategy is the 

same as the above, the investor is considered to be risk-preferred, when 1  , the first strategy is the same as 

the above,, the investor is considered to be risk-averse, and when 
1

2
  , the investor is considered to be risk-

neutral. When
1

(0, )
2

  , investors are perceived as inclined to take risks because they give a higher weight to 

optimism, and when 
1

( ,1)
2

  , they think that investors tend to avoid risk and give a higher weight to the 

worst-case scenario.The value of   determines the best case scenario for selection, and the worst case scenario 

is in between. 

Finally, with a defined fuzzy set, given the selection strategy, VaR can be calculated directly from a 

defined basis, with the profit and loss distribution function determined 

 : ( , )
( , ) : ( )

l x
VaR x P min R p d

  
      „

…  

The VaR here can be understood as the   quantile of the distribution function P, which is written as: 

1( , ) ( )xVaR x P P   

: ( , )
( ) ( )

l x
P x p d

  
   „

 

The value of VaR is obtained if the distribution function or probability density function of the asset is known. 

This section refers to Zhongfei  Li's method of dealing with uncertainty, and deals with the uncertainty 

of VaR as mentioned earlier. In the event that the future profit and loss of the asset is unknown, provide an 

effective strategy for investors with different levels of risk aversion to help them choose a reasonable 

distribution to estimate the maximum possible loss of the portfolio. This strategy solves the VaR calculation 

deviation caused by the incorrect model setting and individual subjectivity, and it is of great practical 

significance to deal with the complex attitude of different investors in the face of risk. In addition to being an 

effective strategy for dealing with VaR uncertainty, it can be further applied to other financial issues with 

uncertainties, such as portfolio optimization. 

The following examples illustrate how the above strategies can be applied to portfolio optimization, 

and the mean-VaR model is optimized using the strategies proposed by the author. The GD of the set is defined 

first, GD  consisting of a distribution set that filters the fuzzy set FD  by a utilization formula (3.5) 
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Next, the optimized mean-VaR model is given: 
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min ( , )

. . ( )

GP D

T

P

VaR x P

s t E x

x



 







…

 
(3.5)

 
  represents a collection of acceptable portfolios, ( )T

PE x  represents the expectations of the portfolio. 

Compared with the traditional mean-VaR model, new constraints and the introduction of fuzzy sets 

are added. The definition of fuzzy set is driven by sample data, eliminating the deviation of model setting 

skewed and simulating distribution function skewed using other methods, and using only accurate sample 

information to define the range of asset income distribution. The new conditions are used to further constrain the 

distribution of fuzzy concentration, and the nether boundary is set by using the strategy proposed in this paper to 

set the nether, requiring that the confidence level of the ( )f   obtained by the new strategy greater than or equal 

to 
0  , in order to improve the confidence level, and the use of VaR for portfolio optimization under this 

constraint condition. And the new constraints can be changed according to the different attitude of investors to 

risk, this paper is only to take this as an example, the introduction of risk aversion parameters can also meet the 

needs of investors with different levels of risk aversion. The new model takes into account the investor's attitude 

towards risk on the basis of reducing deviation, which has strong practical significance. 

Note 3.1.This section uses the constraints formed by density control functions to filter the fuzzy set 
FD  

generated by the sample driver, thus establishing the distribution set 
GD , and thus defining and processing the 

indeterminate distribution. Therefore, the distribution in the 
GD  can be used to calculate VaR, and a collection 

of VaRs is obtained   | : GA VaR VaR D R . If VaR is a continuous form, the distribution law of VaR can be 

obtained by the collection A, according to the distribution law of VaR, the distribution law of DVaR can be 

obtained, and if VaR is a discrete form, the value of DVaR can be obtained directly to the collection A. 

Note 3.2.Further, depending on the investor's different level of risk aversion, 
0  or   can be set different , you 

can get different 
GD , resulting in different sets of A. Different VaR distribution laws can be obtained by 

different sets ad, so that different DVaR values can be obtained according to the distribution of VaR. Because 

different investors' aversion to risk and tolerance are different, the selection of the 
0  and   will vary, so the 

law of the VaR distribution inferred from the set A is uncertain. Based on this, the following two sections use 

the typical distribution to discuss the distribution law of VaR, and draw the resolution of DVaR. 

 

IV. Combination selection questions based on mean-DvaR 

4.1 Sample Selection 

The Shanghai 50 Index is based on a scientific and objective method, selecting the Shanghai stock 

market large-scale, liquidity of the most representative 50 stocks to form a sample stock, in order to reflect the 

Shanghai stock market the most market impact of a number of leading enterprises in the overall situation. The 

Shanghai 50 Index has been officially released since January 2, 2004. The goal is to establish an investment 

index that is active in trading, large-scale, mainly as the basis of derivative financial instruments. The SSE 50 

Index adjusts its constituent stocks every six months according to the principle of combining sample stability 

and dynamic tracking, and the adjustment time is consistent with that of the SSE 180 Index. Temporary 

adjustments to the sample may also be made in exceptional cases. In order to be more representative of the 

empirical research, this paper selected 10 component stocks from the Shanghai Stock Exchange as a sample for 

analysis. The basis for selection is to cover as many different industries as possible, and not suspended during 

sample selection. The data for this article comes from the Cathay Ehn database. The final selection of 10 stocks 

is shown in Table 4.1. 

Table 4.1. Sample stock code and name 

600016 Minsheng Bank 600028 Sinopec 

600029 Southern Airlines 600276 Hengrui Pharmaceuticals 

600837 Haitong Securities 601166 Xingye Bank  

601186 China Railway Construction 601288 Abc 

600031 San Yi Heavy Industries 601857 China Petroleum 
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The sample was selected for a total of 1,339 trading days from March 31, 2014 to September 18, 2019, 

with daily earnings calculated based on the daily closing price of each share. Assuming that 
tp  the price of the 

t-day asset, 
1tp 
 is the price of the t-1 day asset, there are generally two ways to calculate the return on financial 

assets, one is a simple rate of return: 1

1

t t

t

p p
E

p






  ,  and the other is the yield on numbers: 

1

ln t

t

p
E

p 

 . Simple 

yield is suitable for the situation of single period, the positive yield is suitable for the calculation of multiple 

periods, because of its more accurate and good statistical nature, so the asset pricing is now generally used in the 

aspect of arithin yield. This paper also uses the yield of the arithion to calculate the daily earnings of individual 

stocks. For stocks on the day of suspension, select the closing price of the previous trading day as the closing 

price for the day. 

 

4.2 Sample Analysis 

Due to the large sample size, select 4 stocks to draw the yield chart, as shown in Figure 2-5. 

 
Figure 2. 600016 yield Chart 

 
Figure 3. 600029 yield Chart 

 
Figure4. 601288 yield Chart 
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Figure 5. 600276 yield Chart 

 

A comparison of Figure 2-5 shows that the range of 600029 yield fluctuations is small but frequent, 

601288 yield volatility range is small, the most stable, the two stocks are basically concentrated in the range of 

the volatility of the two stocks on the range of [-0.1,0.1]. The range of fluctuations in 60016 is concentrated on 

the range of [-0.2,0.1], and the yield of -0.2 has occurred twice. The range of 60276 volatility is concentrated in 

the range of [-0.3,0.1], and the yield has twice fallen below -0.2. The above yield chart gives a visual chart of 

the fluctuations of the yield of 4 representative stocks, and the following table shows the specific values of the 

average yield and variance of the selected sample stocks during the observation period, see Table 4.2, and the 

covariance matrix and related coefficient matrix of the sample stocks, see Table 4.3. 

 

Table 4.2. Sample Stock Expected Yield and Variance 

Stock code Expectation Variance Stock code Expectation Variance 

600016 -0.00017 0.000335 600028 0.00000886 0.000331464 
600029 0.00074 0.000873 600276 0.000652 0.000656 
600837 0.000379 0.000636 601166 0.000453 0.00032 
601186 0.00064 0.000804 601288 0.000271 0.00025 
600031 0.000713 0.000649 601857 -0.00013 0.000306 

 

The data in Table 4.2 is represented by a scatter plot for comparative analysis, as shown in Figure 6. 

 

 
Figure 6. Variance and returns for sample shares 

 

Available from Figure 6, the smallest variance is 601288, whose yield is in the middle of the sample, 

suitable for risk-averse investors; The largest variance is 600029, at the same time its yield is also the highest, 



Double VaR Model and Its Application Research 

International Journal of Business Marketing and Management (IJBMM) Page 120 

belongs to the typical high-risk high-yield investment choice; There are two stocks with negative expected 

returns, 601857 and 600016, of which MinSheng Bank's yield is the lowest of all samples; 600028's expected 

return rate far less than the yield of other stocks, in the higher-yielding stocks, 600031 and 600276 risk is 

relatively low, compared with 601186, higher yield, lower risk, is a relatively high-quality stock. 

 

Table 4.3. Sample Share Covariance Matrix 
4( 10 )  

 600016 600028 600029 600276 600837 601166 601186 601288 600031 601857 

600016 3.35 1.70 1.68 1.04 2.15 2.27 2.16 1.90 1.58 1.67 

600028 1.70 3.31 2.34 1.18 2.31 2.01 2.53 1.83 2.11 2.65 

600029 1.68 2.34 8.73 2.27 3.34 2.32 3.89 1.82 3.88 1.89 

600276 1.04 1.18 2.27 6.56 2.05 1.25 1.62 0.68 2.34 1.03 

600837 2.15 2.31 3.34 2.05 6.36 2.64 3.44 1.90 3.36 2.17 

601166 2.27 2.01 2.32 1.25 2.64 3.20 2.43 2.11 2.23 1.79 

601186 2.16 2.53 3.89 1.62 3.44 2.43 8.04 2.02 4.05 2.29 

601288 1.90 1.83 1.82 0.68 1.90 2.11 2.02 2.50 1.47 1.70 

600031 1.58 2.11 3.88 2.34 3.36 2.23 4.05 1.47 6.49 1.77 

601857 1.67 2.65 1.89 1.03 2.17 1.79 2.29 1.70 1.77 3.06 
As can be seen from Table 4.3, if the value solder in the covariance matrix is greater than 0, there is a 

positive correlation between any two stocks, i.e. the trend of change in any two stocks is consistent. However, 

since the values are very small, it is not possible to draw more conclusions. 

 

Table 4.4. Sample stock correlation coefficient matrix 

 600016 600028 600029 600276 600837 601166 601186 601288 600031 601857 

600016 1.00 0.51 0.31 0.22 0.47 0.69 0.42 0.66 0.34 0.52 

600028 0.51 1.00 0.43 0.25 0.50 0.62 0.49 0.63 0.45 0.83 

600029 0.31 0.43 1.00 0.30 0.45 0.44 0.46 0.39 0.52 0.37 

600276 0.22 0.25 0.30 1.00 0.32 0.27 0.22 0.17 0.36 0.23 

600837 0.47 0.50 0.45 0.32 1.00 0.58 0.48 0.48 0.52 0.49 

601166 0.69 0.62 0.44 0.27 0.58 1.00 0.48 0.75 0.49 0.57 

601186 0.42 0.49 0.46 0.22 0.48 0.48 1.00 0.45 0.56 0.46 

601288 0.66 0.63 0.39 0.17 0.48 0.75 0.45 1.00 0.37 0.61 

600031 0.34 0.45 0.52 0.36 0.52 0.49 0.56 0.37 1.00 0.40 

601857 0.52 0.83 0.37 0.23 0.49 0.57 0.46 0.61 0.40 1.00 
 

Correlation coefficients are statistical indicators that reflect the correlation between variables. 

Correlation coefficients can also be seen as covariance: a special covariance that excludes the effect of two 

variable series and is standardized, which eliminates the effect of the magnitude of the two variables and simply 

reflects the similarity between the two variables in each unit. As can be seen from Table 4.4, the stock 

correlation coefficients of the same industry are generally relatively high, more than 0.5, there is a strong 

correlation. 

Next, Table 4.5 shows the bias and peakness of the ten stocks. 

 

Table 4.5. Bias and peakness of sample stocks 

 Bias Peakness 

600016 -1.52114 24.65873 

600028 -0.60419 7.126034 

600029 -0.05474 2.93764 

600276 -2.58896 26.20004 

600837 0.076353 4.975348 

601166 0.272293 6.975624 

601186 0.148014 4.029943 
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601288 -0.20295 9.265186 

600031 -0.27642 4.009454 

601857 -0.07902 9.348355 

 

Bias is a measure of the skewed direction and degree of statistical data, the normal distribution of the 

bias is 0, when a set of data bias is greater than 0, we think it is normal, less than 0, is considered to be negative 

bias. If the absolute value of the bias is greater than 0.5, the data bias is obvious. As can be seen from the table 

above, more than half of the stock bias value is less than 0, the performance is on the image is left- and the rest 

is right-side, there is no completely symmetrical distribution. Most of the stocks are less than 0.5, only 3 stocks 

have a significant bias, respectively, 600016, 600028, 600276. The kurtosis is a statistic that describes the 

steepness of the data distribution and is used financially to describe whether there are spikes in the data. The 

kurtosis of normal distribution is 3, and if the kurtosis of the data exceeds 3, there is a peak phenomenon. From 

Table 4.5, it can be seen that, in addition to 600029' peak value of 2.94 close to 3, the peak value of other stocks 

are significantly more than 3, there is a significant peak phenomenon. From this, the stock market is a peak 

phenomenon. 

The peak phenomenon of the stock market is proved by the peak and bias of the stock market, and the 

following is further observed by drawing the income histogram. First, the 10 stocks are recorded as A, B... J, 

draw a histogram of its revenue distribution, as shown in Figure 7 below 

 
Figure 7. The histogram of the distribution of returns on sample shares 

 

As can be seen from Figure 7, the distribution of 600837 Haitong Securities is closest to normal, other 

samples of earnings have different degrees of peak phenomenon; The yield distribution histogram of the sample 

stock is a good proof that there is a clear peak and tail phenomenon in the earnings distribution of stocks, so the 

normal distribution assumption is unreasonable. 

Then use the historical simulation method to simulate the distribution of stock earnings, set the number 

of simulations 2000, produce a random sample, get the income distribution histogram as shown in Figure 8 

below 
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Figure 8. The histogram of benefit distributions using empirical distribution simulations 

 

Next, the profit and loss distribution histogram of the portfolio containing 10 sample stocks is plotted 

using matlab, and the resulting profit and loss histogram is fitted using the normal distribution and the common 

spike thick-tailed distribution, as shown in Figure 9 below. As can be seen from the following figure, the yield 

distribution histogram is fitted using Logistic distribution, stable distribution, normal distribution, non-

parametric distribution and t distribution respectively, and the best fitting effect is non-parameter distribution, 

followed by t-distribution, stable distribution is also basically in line with the characteristics of yield data peak 

thick tail, and the coincident degree is high. As can be seen from the graph, the normal distribution and Logistic 

distribution fitting effect is not ideal, mainly at the peak of the value is small, does not meet the peak 

characteristics of financial data. 

 

 
Figure 9.  Portfolio profit and loss distribution fit comparison chart 

 

4.3 Portfolio selection based on the Mean-DVaR 

4.3.1 Mean-DVaR model building 

The concept of DVaR and the characteristics combined with the uncertain distribution situation in 

chapter 3 of this paper can be seen, based on the best (distributed) scenario of the mean-DVaR model can be 

equivalent to the mathematical model representation as follows: 
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(4.1) 

Of these,  1 2, , , ,KM G G G    ,where 
1 2, , , ,KG G G represents the different profit and loss 

distributions that the portfolio may have in the future, 
GD is a fuzzy set defined above, ( )T

PE x  represents the 

expectations of the portfolio,   represents a collection of acceptable portfolios, and inf ( , )VaR x P  represents 

the very small value of VaR taken from all possible distributions. 

 

4.3.2 Effective frontier comparison of VaR models in different distributions 

As can be seen from the previous, the DVaR is proposed based on the uncertainty of distribution or 

changes in the confidence level that cause VaR to be uncertain, so the application of DVaR to the actual need to 

consider the impact of uncertainties. The empirical part of this paper expects to obtain a large number of 

portfolio income distribution through simulation method, so as to draw the effective frontier of the portfolio. 

The selection of simulation methods will inevitably have a direct impact on the results, and the impact of 

distribution uncertainty on the effective frontiers of the portfolio is considered here by selecting two different 

methods, historical simulation and Monte Carlo simulation. The previous section has simulated the distribution 

of stock earnings using historical simulation method, and has drawn a histogram of the income distribution, so 

that the results can be used directly to draw an effective frontier. Next, the author also uses the Monte Carlo 

simulation to get the portfolio, drawing an effective frontier. Figure 10 is a Monte Carlo simulation of the 

portfolio yield risk scatter plot, where the number of simulations set to 2500 times, i.e. 2500 sets of portfolio 

weight vectors and the corresponding return-VaR value. 

 
Figure10.  Monte Carlo Simulation Scatter Plot 

 

Next, using the results obtained by the historical simulation method and the Monte Carlo simulation 

method, a comparison of the portfolio's effective frontiers is drawn, as shown in Figure 11 below 
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Figure11.  Monte Carlo Simulation and Historical Simulation Effective Frontier Comparison 

 

4.3.3 Effective Frontier Establishment and Analysis of DVaR 

The effective front of VaR corresponding to different simulation methods can be obtained from Figure 

11, and the effective front line of DVaR is drawn by envelope analysis technology. The essence of DVaR is to 

use extreme value to filter VaR in uncertain situations to reduce risk. Therefore, for the valid boundaries 

obtained by different simulation methods, If, as shown in Figure 11, the Monte Carlo simulation has a slight left 

shift over the effective boundary of the historical simulation method, the effective edge of DVaR should be 

formed by including all feasible sets; This means that the effective boundary formed by DVaR can envelope all 

feasible sets of the mean-VaR under different distributions, i.e. as shown in Figure 12. 

 
Figure12. DVaR and VaR Effective Frontier Comparison Chart 

 

This paper uses different simulation methods to consider the impact of uncertainties on VaR, plots the 

effective boundary of mean-VaR, and uses envelope analysis to obtain the effective boundary of DVaR, and 

applies the proposed DVaR concept to the combination selection model. It can be seen that dVaR is used to deal 

with uncertainty and maximize portfolio efficiency for the effective boundary deviation of the portfolio caused 

by uncertainty. 

As can be seen from Figure 12, the feasible set outlined by DVaR Effective Boundary covers all 

feasible sets obtained by different simulation methods, and optimizes the mean-VaR model in terms of 

efficiency. All points on the right side of the red envelope curve are a viable set of DVaRs, and for any point on 
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both green curves, when the yield is given, a lower risk point is always obtained on the red curve. The 

application of DVaR makes the portfolio effectively boundary left and the portfolio efficiency improves. 

When the author uses Monte Carlo simulation to generate a portfolio, it is found that the difference in 

the number of simulations also leads to the deviation of the effective boundary, so the number of simulations of 

2500 and 5000 times, respectively, and the mapping of scattered points is drawn for comparison, as shown in 

Figure 13. 

 
Figure13. 2500 and 5,000 Monte Carlo simulations 

 

Among them, the yellow scatter was the result of 5000 Monte Carlo simulations and the blue scatter 

point was the result of 2500 Monte Carlo simulations. The effective frontier produced by the 5000 Monte Carlo 

simulations, which is readily available in Figure 13, is located on the effective front produced by 2500 

simulations, and the effective front of DVaR at this time should be made up of the benefit-risk points from the 

two simulations, as shown in Figure 14 

 
Figure14.  DVaR Effective Frontier 

 

Compared with the above analysis, the application of DVaR makes the effective boundary of the 

portfolio shift to the left, i.e. reduces the risk of the portfolio under the condition that the portfolio return is 

unchanged, so it is of practical significance. In this paper, the influence of the uncertainty of the simulation 

method on the portfolio, as well as the effect and optimization effect of DVaR in this case, is considered mainly 

from the perspective of the profit and loss distribution of the portfolio, and the empirical analysis shows that the 

effective frontier of the portfolio has been optimized. 

Select 10 portfolios from the effective fronts of VaR and DVaR to draw their portfolio ratios, as shown 

in Figures 15 and 16 below 
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Figure15.  Asset weights under the VaR model 

 

 
Figure16.  Asset weights under the VaR model 

From the above-mentioned asset proportion chart, it can be seen that 600028 Sinopec and 600837 in 

the portfolio of the proportion of 0, in the DVaR model, 601857 and 601166 accounted for a significant increase 

in the proportion, The corresponding proportion of 600031 decreased significantly, combined with the yield 

variance of the sample shares, it can be seen that 601857 and 601166 are low-risk assets, 600031 risk is higher. 

It can be seen that in the effective boundary of DVaR, the proportion of low-risk assets has been increased and 

the proportion of high-risk assets decreased, so the overall risk of the portfolio is lower than the mean-VaR 

model, which is consistent with the conclusion of the effective front shift of the portfolio reached in the previous 

text. 

 

4.4 Summary of this chapter 

Through the above empirical analysis, the author will put forward the DVaR reality, combined with the 

portfolio-related theory, made a exploration of its practical application. In this paper, the extreme value of 

DVaR is used to optimize the portfolio, considering the influence of distribution uncertainty on the portfolio, 

selecting different simulation methods as the variable factors, and using DVaR to maximize the effective 

cutting-edge efficiency of the portfolio under the influence of uncertainty. Comparing the effective front of 

DVaR with the mean-VaR model, the results show that the proposed DVaR risk measurement and the 

combination selection based on the mean-DVaR effectively improve the combined investment effect of the 

mean-VaR model. 
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