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Abstract: In this paper, by using the basic method of differential geometry, combined with the optimization 

theory and the basic technique of data analysis, the definition, basic properties and statistical characteristics of 

nonlinear correlation coefficients on manifolds are studied and given, test the rationality and validity of the 

nonlinear correlation coefficient defined in this paper. Therefore, the study of this paper has certain theoretical 

value and potential practical significance. 

Keywords: nonlinear correlation coefficient, manifold, statistical characteristics 

 

I. Introduction 
In recent years, manifold learning, as a more and more popular research direction, has received widely 

attention by many experts and scholars. Manifold learning, roughly speaking, is a set of sample data points of 

observable points in a high-dimensional Euclidean space, which is understood to lie on a low-dimensional 

manifold embedded in a high-dimensional Euclidean space, then, the data points on the high-dimensional space 

are projected to the low-dimensional space by a suitable dimension reduction method, and the basic 

characteristics of the data points on the original manifold are preserved as much as possible. In this way, we can 

eliminate the superfluous information, realize dimensionality reduction, and study the inherent law and basic 

characteristics of data easily. The correlation coefficient is an important inherent law of data. Considering that 

manifolds are themselves generalizations of curves and surfaces in higher dimensional space, there are often 

strong Linear independence between their variables, therefore, it is necessary to study the nonlinear correlation 

coefficients between variables on manifolds systematically. As far as we know, the research on the correlation 

coefficient on manifold is still in the initial stage, and the related research results are few. 

So some scholars began to study the correlation coefficient, initially with Ting Wang (2011) [1] who 

defines a new correlation coefficient, it can be used not only in nonlinear cases, but also in linear cases, and can 

be regarded as a general correlation coefficient. Ruiming Liu (2013)[2] proposed a tracking framework based on 

a combination of template matching and Emmerich Kálmán prediction. The projection coefficient obtained from 

principal component analysis is used as template, and the nonlinear correlation coefficient is used to measure the 

matching degree. Zhou Hongfang (2021)[3] studies the feature selection process in machine learning, and 

proposes a feature selection method based on mutual information and correlation coefficient, the absolute value 

of the correlation coefficient between the two features is used as the weight of the redundancy expressed by 

mutual information in the evaluation criteria. Experimental results show that the method can effectively remove 

the redundant information in the evaluation criteria.Antonella Plaia(2021)[4] considered the importance of the 

commutative elements belonging to the top (or bottom) in ranking (position weight) , studied the consistency of 

ranking with relation, and proposed the position-weighted rank correlation coefficient, used to compare rankings 

and relationships.Dong Xiaomeng (2010) [5]proposed a generalized correlation coefficient which can describe 

the correlation degree between variables or vectors by using the fourth-order moment method in order to solve 

the linear correlation problem of correlation coefficient. 

In manifold learning, Chen Changyou(2010)[6] believed that existing algorithms such as ISOMAP try to 

ensure that data points are equidistant embedded on manifolds, but in practical applications, such as face and 

gait recognition, the recognition effect is not so satisfactory, he proposed a two-stage Bernhard Riemann 

manifold distance approximate projection (TRIMAP) algorithm based on tensor, which can quickly calculate the 

approximate optimal projection for a given tensor data set, at the same time, the experiments were carried out 

based on human gait database and face recognition database. The experimental results show that the recognition 

ability of TRIMAP algorithm is better than other common algorithms. Lee S.-M (2007) [7]transformed the 

probability distribution by mapping it to a hypersphere through isometric transformation. The sphere constructs 

a Bernhard Riemann manifold with a simple geodetic distance. Then, a Freychet mean is estimated on a 

Bernhard Riemann manifold for principal component analysis in a plane tangent to the mean. I. Ya. Savka(2010) 

[8]studied the non-local two-point boundary conditions for secondorder partial differential equation with 
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constant linear correlation coefficients, the unique solvable condition of the problem on the scale of Sobolev 

space is established, and the metric theorem of the lower estimate of the small denominator on the linear 

manifold is proved. 

This paper mainly studies how to measure the nonlinear correlation between variables on a manifold, 

summarizes and classifies the common manifold dimensionality reduction methods, and selects the suitable 

dimensionality reduction methods. The main reasons for dimensionality reduction are: 1. The Galway number of 

the original observation space sample will be greatly redundant, if the sample does not deal with the classifier is 

prone to "Dimension disaster" 2. The non-linear correlation coefficient proposed in this paper is mainly suitable 

for the random variables with strong non-linear relationship, and is not good for the random variables with 

strong linear relationship, therefore, it is necessary to adopt appropriate dimensionality reduction methods to 

preserve the nonlinear structure of the original manifold and find the random variables with strong nonlinear 

relations. 3. Manifold is different from Euclidean space, and its properties are very different from those of 

Euclidean space, so it can not be calculated directly by coefficient on Euclidean space. 

The paper is structured as follows. In the second part, we introduce the basic definition of non-linear correlation 

coefficient SEVP , prove and give some basic properties of the corresponding non-linear correlation 

coefficient SEVP .The third part is the simulation analysis, the results show that the proposed definition is 

reasonable and effective. In the last section, we summarize the theories and models covered in this paper and 

give directions for further in-depth research on nonlinear correlation coefficient on manifold. 

 

II. The nonlinear correlation coefficient on manifold 
At present, there are few researches on the nonlinear correlation coefficient, and some commonly used rank 

correlation coefficients are not suitable for our research needs, we need a kind of coefficient which is fully 

suitable for measuring the nonlinear relationship between variables, using the variance decomposition formula: 

       Var Var VarY E Y X E Y X ∣ ∣
        

                                     (2.1) 

We define a new nonlinear correlation coefficient and prove some of its basic properties. 

Definition 1. Let X  and Y  be random vectors on the probability space  Ω, ,F P , and the nonlinear 

correlation coefficient SEVP  be in the following form: 
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Theorem 2.1.  0,1SEVP  

Proof. First prove 0SEVP… , because the coefficient has translation invariance, so suppose  E X 

   0, 0, ,E Y f x y  be its joint probability density,  xf x  is an edge probability density function for 

the random variable X ,to prove 0SEVP… , just need proof: 
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The left expansion of the formula (2.3) gives: 
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Among them,    
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And then the deformation of the right can be: 
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To prove that the left is greater than the right, just prove: 

         
22
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 (2.6) 

And because: 
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The substitution of the formula (2.7) into the formula (2.6), whose left-hand form can be converted to: 
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Using the integral form of Cauchy's Cauchy-Schwarz inequality, we get: 
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So we have 0SEVP… , because 
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2

xyp  are all between 0 and 1,so the maximum value 

of the correlation coefficient of SEVP  must not exceed 1, hence  0,1SEVP . 

Consider a smooth m  dimensional manifold whose tangent plane should in fact be m  dimensional, the 

above m  principal curvature is arranged from small to large in absolute value, reflecting the high to low 

degree of linearization of the manifold along the m  principal direction at that point, in fact, it is a space where 

the manifold is more linearized at that point, and the space that the linear space is stretched by the tangent vector 

m  at that point, that is, the tangent space of the manifold at that point, it is shown that the tangent space of a 

manifold is highly linearized, and the projection onto the tangent space contains more linear structures on the 

original manifold. 

But our goal is to preserve the nonlinear structure of the manifold as much as possible, since the projection 

onto the tangent space of the manifold will contain more linear structure, then the projection onto the orthogonal 

complement of the tangent space may contain more nonlinear structures. In theory, if we can find a linear space 

that is perpendicular to the tangent space of all points on the manifold, so, by projecting onto that space, we can 

preserve as many nonlinear structures as possible. Intuitively, that is, to have as large an angle as possible with 

all locally tangent spaces. 

So now the problem comes down to a given set of sample points  1 2 3, , , ,dX X X X X X   on a 

m  dimensional manifold, how to find the tangent space angle with all points and the largest one k  

dimensional linear space, for each point ix  there is a tangent space, may be remembered as span  iU , 



Characteristics and simulation analysis of nonlinear correlation coefficient on manifold 

International Journal of Business Marketing and Management (IJBMM) Page 56 

where 
T

i i mU U I , the base of the linear space we need to solve for is iV , where 
T

i i kV V I , the optimal 

problem is as follows: 
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                                        (2.10) 

where tr ( ) represents the sum of the diagonal elements of the matrix. 

Then the original problem is transformed into the eigenvector 1, , kt t , which corresponds to the minimum 

eigenvalue k  of the matrix 
1

n T

i i iVV , the k  eigenvector is the base of the linear space with the largest 

angle between the solution and all tangent spaces. 

Now we know that a m  dimensional manifold is embedded in a d  dimensional space by an unknown 

function   , mf R   , where m d , a known set of sample points 

  1

1 2 3, , , , , d

d iX X X X X X R    , has: 

   , 1, ,i iX f i n   (2.11) 

1m

i R   is the result of the dimensionality reduction of iX . the goal of nonlinear dimensionality reduction 

is to reconstruct i  corresponding to iX  without explicitly building the f  function. Assuming that f  is 

smooth enough, do a Taylor expansion at a given   : 

         2
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Here   d m

fJ R   is the Jacobi matrix of f  at  , if remember: 
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f  tangent space   at   is generated from the m  column vector of  fJ  , with the highest dimension 

  , span fm J  , the vector    is the coordinates of  f   in the affine space 

   , ff J    can not be solved because the exact form of f  is not known, if 
d mV R

  is a 

Orthonormal basis matrix of  , then: 

    *

fJ V       (2.15) 

And then there's: 

    * T

fV J P                                                             (2.16) 

And because when  2

2O    goes to 0 , there are: 

      ff f J                                                                (2.17) 

Namely: 

    *f f V    
                                                                

 (2.18) 



Characteristics and simulation analysis of nonlinear correlation coefficient on manifold 

International Journal of Business Marketing and Management (IJBMM) Page 57 

Let  1, ,i i isY x x  be ix  the nearest neighbor of s  as measured by Euclidean distance (including ix  

itself) for each sample point, the neighborhood of 
ji i i ix x V   and replace ix  with some 

*

ix  the 

optimization process can then be written: 

   
* *

2 2
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                                         (2.19) 

Where iV  is the standard orthogonal matrix of m  column,  1Θ , , m s

i s R    , thus iV  is the 

approximate orthogonal basis of m  of the approximate tangent space of the manifold at ix , the optimal value 

of x  should be ix , and the optimal value of iV  should be the left singular vector corresponding to the 

singular value of m  before 
1 T

iY I ee
s

 
 

 
. 

Definition 2. The initial sample point  1 2 3, , , dX X X X X   on a manifold embedded in dimensional 

Euclidean space, 
dRM  is a submanifold of m  Dimension, : dR M M  is an orthogonal 

projection transformation that projects a point on X  to , : dR F M  is a linear projection 

transformation that projects a point on X  to a tangent space F , its base solution is as shown above, ia  is 

the solution of the equation  i F iX X a , for any  , 1, ,i j d  , The manifold form defining the 

correlation coefficient of SEVP  is: 
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Among them: 
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M  is a k  dimensional manifold and   is an orthogonal projection transformation. 

When ia  and ja  can not be solved, the command: 
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Theorem 2.2. When the original sample data point X  is on the Euclidean space, the manifold form of the 

correlation coefficient SEVP  is equal to the Euclidean space form. 

Proof. Remember that the minimum affine Linear subspace of X  Euclidean distance is L . When the original 

data sample point X  is on an Euclidean space, the m  submanifolds and L  with the minimum Euclidean 

distance of X  should be the same, there is LM , now R  , there is: 
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And because: 
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III. Simulation analysis 

In this chapter, we construct a group of sample sheets, and use the dimensionality reduction method to 

obtain SEVP  correlation coefficient. 

Build the following sample point X  : 

   1.5 1 2 rand 1,a pai N     

  height rand 1,h N   

    cos ; ; sinX a a height a a      

rand  1, N  is used to generate N  random numbers between 0 and 1.Taking 5, 5000h N  , it is 

obvious that the sample point X  is a two-dimensional manifold embedded in a 3D. As shown in Figure 1 

below, the dimension reduction effect is shown in Figure 2. 

 
Figure 1. A scatter plot of 5000 sample points with a width h  of 5 
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Figure 2. The result graph of dimension reduction by using tangent space 

 

As you can see, the scatterplot in Figure 1 is a snail-like 3d scatterplot. The component of the sample point 

X  on the X  axis is very Linear independence to the component on the Z  Axis, but the components on the 

Y  Axis and the components on the X  axis and the components on the Z  Axis do not have a good 

correlation, figure 2 obviously preserves the snail-like structure of the original manifold and proves that the 

linear dimensionality reduction method has a good effect on preserving the nonlinear structure of the manifold. 

Make the original sample data point  1 2 3, ,X X X X , Using the random variable form of the correlation 

coefficient of SEVP  on a manifold, then the correlation coefficient of 1X  and 3X  is 0.845 and the data 

value is large. From the property of the correlation coefficient, it is known that there is a good nonlinear 

relationship between the variables. 

 

IV. Summary and prospect 
Non-linear correlation coefficient is a very important correlation coefficient, in the era of big data, the 

phenomenon of data redundancy is very prominent, often in the form of high-dimensional, non-linear, therefore, 

it is necessary to reduce the dimension of high-dimensional data, remove the redundant information, study the 

correlation coefficient between variables, and mine the essential characteristics of data. In this paper, a new 

nonlinear correlation coefficient SEVP  is proposed, and it is extended to the manifold, in this paper, a 

method to measure the nonlinear relationship between variables on a manifold is given, which is useful for us to 

study the nonlinear relationship between variables. 

Because of the deficiency of professional knowledge and skill, this paper can not provide a simple and 

general formula of nonlinear correlation coefficient on manifold, we can only find a method to measure the 

Linear independence between variables on a manifold, and the steps are relatively complicated. 
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