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Abstract: In this paper, the black-litterman model is introduced to quantify investor’s views, then we expanded 

the safety-first portfolio model under the case that the distribution of risk assets return is ambiguous. When 

short-selling of risk-free assets is allowed, the model is transformed into a second-order cone optimization 

problem with investor views. The ambiguity set parameters are calibrated through programming, then we use 

the interior point method to calculate the sensitivity of the optimal solution and the effective frontier. This paper 

finds that the overall effective frontier of the safety-first portfolio under distribution ambiguity is located above 

the original effective frontier, which means the safety-first portfolio with ambiguous distribution has stronger 

robustness. 
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I. Introduction 

     The Black-Littleman model was put forward by Fischer Black and Robert Litterman in 1992, which 

was based on the CAPM model, tried to incorporate investor’s views based on a prior distribution to derive a 

posterior distribution of portfolio returns and optimal asset allocations [1]. Meucci [2] [3] [4] rephrased the 

model in terms of investors’ views on the market and the market-based version was believed to be much more 

parsimonious and allowed for a more natural extension to directly input views in a non-Normal market, rather 

than just the market parameters as in the original Black and Litterman model. Then, Meucci extended the 

Black-Litterman model by the non-normal views, and allow for both analysis of the full distribution as well as 

scenario analysis. However, the implementation of Meucci’s framework proposed so far still relies on restrictive 

normal assumptions. 

     Xiao and Valdez [5] made important work to further extend Meucci’s model from the normal 

distribution to the elliptic distribution when market returns follow the ellipse distribution, however the 

assumption still based on market equilibrium in the model. After considering the appropriate conditional 

conjugate prior distribution, the explicit form of the posterior distribution was derived, so that the generalized 

model could be applied to various risk measures (such as mean variance, mean-VaR, mean-CVaR). On the basis 

of this work, Pang and Karan [6] also obtained the analytical solution of the optimal portfolio under the 

constraint of the mean-CVaR and the Black-Litterman model when the asset return rate follows an elliptic 

distribution. 

     In order to control the probability of loss and obtain the maximum safety returns, Kataoka [7] proposed 

the third form of the Kataoka-safety first rule (KSF), which was based on safety first rule and pursued the 

improvement of portfolio return under the constraint of the safety return. Elton and Gruber [8], introduced the 

KSF model under the assumption of normality; Ding and Zhang [9] conducted a further study on the KSF model 

with a normal distribution of asset returns under no short selling restrictions. They considered the geometric 

characteristics of the KSF model and established a risk asset pricing model to give an explicit solution to the 

optimal portfolio when selling short is allowed. Ding and Liu [10] also studied the problem of the optimal 

solution of the KSF model with risk-free assets, and found the optimal solution of the primary safety portfolio, 

and proved that this optimal solution was also effective for mean-variance . 

     However, Ellsberg [11] found many factors which were beyond the knowledge of most investors cause 

ambiguity or Knightian uncertainty in reality. Researches on the ambiguity focus on the distributionally robust 

formulation of the risk measures which described the worst-possible risk level over a set of potential 

distributions. The optimization is to be done subject to an ambiguity set of distributions rather than assuming 

that there is an underlying probability distribution that is known to the decision maker when it comes to 

distributionally robust optimization. It is a generalization of classical robust optimization which is well-known 

that the classical robust optimization can generate portfolios that are immune to noise and uncertainty in the 
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parameters. But, Cheng et al. [12] found that such portfolios can be overly conservative because of making no 

use of any available information on distribution.For the reason that assuming probability distributions of 

uncertain parameters belong to an ambiguity set is the key ingredient of any distributionally robust optimization 

model, two types of ambiguity sets have been proposed: moment-based ambiguity sets and metric-based 

ambiguity sets. Popescu [13]; Delage [14] and Kang [15] studied moment-based ambiguity sets by assuming 

that all distributions in the distribution family satisfy certain moment constraints.Metric-based ambiguity sets, 

such as the  -divergence proposed by Bayraksan and Love [16] and Wasserstein metric studied by both 

Esfahani [17] and Jiang [18], may contain all distributions that were most likely distribution with respect to a 

probability metric or sufficiently close to a reference distribution. 

 

II. The model 
    Consider the problem of a KSF (Kataoka-safety first rule) investor operating in a market consisting of n  

risky assets and a risk-less asset with return rate. Return of the i th risky asset follows the ellipse distribution, 

 , ,i n nr ED D g . Mean vector of risky assets is represented as = [ ]  nrE R . 
 n nR  is the the 

covariance matrix of risk assets and   ( ) = ,


  i j
n n

cov r cov r r .   is finite and 
 n nR is finite and 

positive semidefinite. Strategy x nR ,  1 2 nx= x ,x ,...,x
T

. The variance of the risky assets portfolio can be 

represented as 
2

x( x) = x x T Tvar r .  

    Lemma 2.1  19  The KSF portfolio problem:  
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 is equivalent to this optimization problem:  
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ED  is a parameter decided by both confidence level   and the distribution of risky assets. Then, we 

can use the Black-Littleman model to quantify investor views. View matrix v  is a k n  matrix, and its prior 

distribution is  | P , , ( ; ( ))  k kv r ED g p r , P  is the view-choosing matrix and   is Equilibrium 

market return matrix, 
1( ) = ( ) D ( ) Tp r r r .  

Lemma 2.2  5  | , , ( ; ( ))  k BL BL nr ED g qv v  is the conditional distribution of risky assets . The 

parameters are calculated as follows:  

  
1

= ( )P P P P


    T T
BL D v  (2.3) 

  
1

= P P P P


 T T
BLD D D D  (2.4) 

  
1

( ) = ( ) ( )P P P P


     T Tq v v v  (2.5) 

 = ( ( ) / 2)BL BL kD C q v  (2.6) 
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The function :  kC R R  satisfies  

 
1

( / 2) ( ) = ( )
2



k k k
x

C x g x g t dt  (2.7) 

  

    By using Black-Littleman model, we can replace   and   in the original KSF problem with BL  and 

BL  respectively, which are new parameters with investor’s views. So, processed by Black-Littleman model, 

the BL- KSF problem can be written as follows:  
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    Definition 2.1 (Ambiguity in distribution). The random variable BL  and BL  assumes a distribution 

from the following set:  
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where M  is the set of all probability measures on the measurable space  ,nR B  with the  -algebra 

B  on 
nR . 1 2,  R  are two scale parameters controlling the size of the uncertainty set. ̂BL  and 

̂BL  are estimated values of the mean vector and the covariance matrix of BL  and BL . Here, 


( )means that if 


A B , then B A  is positive semidefinite(positive definite).  

 

    With this Ambiguity set, the optimal strategy of BL-KSF model can be expressed explicitly and makes it 

more convenient for the later analysis on the behavior of investors with different levels of ambiguity aversion. 

We define the following two sets, which will be used in subsequent proofs. In ( , ) BL BLF , risky assets 

return BLr  satisfies: 

  P P( , ) = P : E ( ) = , ( ) = 0   BL BL BL BL BL BLr Cov rF M  (2.9) 

 Its mean return BL  and covariance matrix BL  are in the Ambiguity set ˆˆ( , ) BL BLU ,  
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where 
nS  denotes the space of the symmetric matrices of dimension n . Apparently,  

 1 2
ˆˆ( , ) ( , )

( , ) = ( , )
 

  
  

BL BL BL

BL BL BL BL

D
U

F  

Based on the historical data of the return on risk assets- BLr , we can calculate ̂BL  and ̂BL , and assume that 

̂BL  and ̂BL  are unbiased estimates of BL and BL . However, the deviation of estimates make the 

calculated portfolio do not have robustness in the worst case. In order to calculate the optimal asset portfolio of 

the robust BL-KSF model, we assume that the uncertainty set ˆˆ( , ) BL BLU  accounts for information about 
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the mean of random terms BL  and the covariance matrix BL . The robust model of BL-KSF can be 

expressed as follows:  
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 In which,  
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III. The robust BL-KSF model 
  

    Theorem 3.1 The robust model of robust BL-KSF can be transformed into a Second-order cone 

optimization problem as follows:  
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    Proof. We use the methods mentioned by Chen and He [20], here are the proofs. For 

 , , ( ; ( ))  BL k BL BL nr ED g q v , we have 
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can be wrote as  
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 Then we can rewrite robust BL-KSF model  
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 Let 
1 (1 ) = ED ED
k

F F , after the simplification,  
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Now we consider the restriction under the ambiguity set.  
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And (3.5) is equal to  
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    The ambiguity set ˆˆ( , ) BL BLU   
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    BL  and BL  are independent of each other, so 
P ( , )

1 2

x xmax
 

T

ED BL

BL
D

F  and 

P ( , )
1 2

( )xmin
 




T T

BL f

BL

r e
D

 are affected only by BL  and BL  correspondingly. We can consider the value 

of BL  and BL  separately. And we have For 

ˆ

( )xmin
 




T T

BL fr e
U

, we consider BL wc , the worst case of 

BL  in the ambiguity set ˆˆ( , ) BL BLU . 

 

1

T

ˆ x
ˆ=

ˆx x


 






BL

BL wc BL

BL

m
 

        
ˆ

T

1

( )x = x xmin

ˆˆ= ( )x x x

 

 

 



 

  

T T T T

BL f f
BL wc

T T

BL f BL

r e r e

r e m

U

  (3.8) 

                 

For 

ˆ

x xmax




T

ED BL
U

F , let ˆ=  BL BL BL , we have  

              

ˆ

ˆx x x xmax




  T T

ED BL BL
U

F  (3.9) 

              2
ˆ. . ( 1)



  BL BLs t  

 , where  

2

ˆ ˆ

ˆ ˆx x = x x x x = x ( )x.max max 
 

 

    T T T T

ED BL ED BL BL ED BL
U U

F F F  So we can translate 



Safety-first model with investor’s view under distribution ambiguity 

International Journal of Business Marketing and Management (IJBMM)        Page 75 

the former restriction into  
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And we can also get the equivalent objective function  
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The robust BL-KSF model can be rewrote as:  
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IV. Simulation analysis 

  

4.1  Data 

    we use an example with eight assets, and the data generated by Monte Carlo simulation. We assume that 

there are 8 assets in the market. The descriptive statistical analysis of risky assets are shown in Table 4.2. The 

covariance of 8 assets D  and the covariance of the market portfolio   are shown in Table 1 and Table 2 

respectively. 

First of all, we denote matrix P and H  as follows: 
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fr ev  Then we can use these data to calculate BL

and BL   
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4.2  Calibration of parameters 1  and 2  

    We need to choose values for parameters 1  and 2  to control the degree of ambiguity and to finish the 

robust or adjusted-robust optimization approach. However, we rarely have complete information on the 

distribution of asset returns in reality. It is crucial to a formal rule to guide an investor in making an appropriate 

choice of parameters in decisions based on a few historical samples.  

   

Descriptive statistical analysis of risky assets. 

  

 Mean Median  Maximum  Minimun  Standard  

Deviation 

asset1 0.009603 0.004345 0.245226 -0.24532 0.080807 
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asset 2 0.012575 0.018006 0.198816 -0.2573 0.076029 

asset 3 0.010392 -0.00144 0.273072 -0.25994 0.08861 

asset 4 0.006573 -0.0026 0.241028 -0.29088 0.086733 

asset 5 0.015177 0.013096 0.253678 -0.25542 0.082706 

asset 6 0.004399 0.004072 0.205778 -0.26577 0.070992 

asset 7 0.01169 0.00279 0.322148 -0.27956 0.103158 

asset 8 0.007674 0.0077 0.276218 -0.27057 0.087391 

 

  

  

Table  1: The covariance of 8 assets D . 

  

 asset1 asset 2 asset 3 asset 4 asset 5 asset 6 asset 7 asset 8 

asset 1 0.006638 0.005171 0.005267 0.006354 0.006057 0.004686 0.007091 0.005587 

asset 2 0.005171 0.005783 0.004125 0.005676 0.005354 0.003996 0.005797 0.00513 

asset 3 0.005267 0.004125 0.008451 0.005664 0.005581 0.00528 0.006486 0.005316 

asset 4 0.006354 0.005676 0.005664 0.007819 0.006327 0.005115 0.007746 0.006623 

asset 5 0.006057 0.005354 0.005581 0.006327 0.007243 0.00467 0.006555 0.005787 

asset 6 0.004686 0.003996 0.00528 0.005115 0.00467 0.005106 0.006041 0.004841 

asset 7 0.007091 0.005797 0.006486 0.007746 0.006555 0.006041 0.011204 0.007506 

asset 8 0.005587 0.00513 0.005316 0.006623 0.005787 0.004841 0.007506 0.007706 

 

     

Table  2: The covariance of the market portfolio  . 

 asset 1 asset 2 asset 3 asset 4 asset 5 asset 6 asset 7 asset 8 

asset 1 0.000097 0.000062 0.000086 0.000092 0.000092 0.000058 0.000137 0.000092 

asset 2 0.000062 0.000056 0.000055 0.000066 0.000066 0.000040 0.000091 0.000069 

asset 3 0.000086 0.000055 0.000154 0.000091 0.000094 0.000072 0.000139 0.000098 

asset 4 0.000092 0.000066 0.000091 0.000111 0.000094 0.000062 0.000147 0.000108 

asset 5 0.000092 0.000066 0.000094 0.000094 0.000114 0.000059 0.000131 0.000099 

asset 6 0.000058 0.000040 0.000072 0.000062 0.000059 0.000053 0.000098 0.000067 

asset 7 0.000137 0.000091 0.000139 0.000147 0.000131 0.000098 0.000284 0.000163 

asset 8 0.000092 0.000069 0.000098 0.000108 0.000099 0.000067 0.000163 0.000143 

  

    We can apply bootstrapping procedure under standard assumptions concerning the time series of the 

returns. This approach that draw random observations with replacement from the available observations is 

reasonable from a statistical viewpoint, and its computational efficiency is attractive.  
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1.  Construct 120 columns return data of 8 assets as 8 120r . Calculate mean ̂ , ˆ ˆ,BLD  and ̂BL
.  

2.  Draw 80 columns of 8 120r  randomly as the i th bootstrapping sample 
(8 80)B

i
r   

3.  Use 
(8 80)B

i
r  to calculate ˆˆ ˆ, ,  B B BL B

i i i
D  and ˆ

BL B
i

D   

4.  Let    
T

1

1
ˆˆ ˆ ˆ ˆ=    

    i BL B BL BL BL B BL
i i

 and 
2

ˆ|| ||
=

ˆ|| ||










BL B
i

i

BL

. For i th bootstrapping 

procedure, we can get 1 i  and 2 i .  

5.  Repeat the above step 1 to 4 for a total of 300 times, find 300 pairs of ambiguity set parameters 1 i

and 2 i , sort them in ascending order, and select the 95 %  quantile value of the the 1 i  and 2 i  

sequence as the best estimates of the two parameters , 1̂  and 2̂ .  

    Through the above experiments, the following results are obtained:  

1̂ = 0.05638  

2
ˆ = 0.03324  

    So far, the estimation of all parameters in the second-order cone optimization model has been determined. 

The SeDuMi.1.3 toolkit in Matlab will be used to solve the second-order optimization problem. 

 

4.3  Sensitivity analysis to the parameters of the ambiguity set 

 

    In order to study the specific effect of ambiguity set parameters on each asset share in the optimal solution, 

the following parameters are defined here:  

 
   

 

* *

1 2 1 2

x *

1 2

ˆ ˆx , x ,
R = , =1,2, 8

ˆ ˆx ,

   

 




j j

j
j

j  (4.3) 

 Among them, 1 2(0.04510,0.06766), (0.02659,0.03989)   .  *

1 2x , j  indicates the share of 

assets in the optimal solution of the second-order cone optimization problem with the investor’s point of 

view,when the ambiguity set parameter is 1  and 2 . From this parameter, the sensitivity of each asset to the 

ambiguity set parameters and the optimal solution can be expressed as xR
j
. The estimated values of ambiguity 

set parameters have been given in the previous section, 1 2
ˆ ˆ= 0.05638, = 0.03324  . The results obtained 

are shown in the Fig. 1.  

 
                                (a)                                      (b) 
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                           (c)                                      (d) 

 
   (e)                                      (f) 

 
   (g)                                      (h) 

 

Figure  1: Sensitivity analysis of ambiguity set parameters in the optimal solution of the model. Relative 

difference xR
j
 (i=1,...,8 in percentage) for varying parameters 1  and 2 . 

   

 

4.4  Effective frontier and robustness analysis of optimal solution 

    According to the various parameters calculated in Section 4.1, including the return on risk assets ̂BL  and 

covariance with the investor’s view ̂BL , the ambiguity set parameters estimated by using the Bootstrap 

method 1̂ = 0.05638 , 2
ˆ = 0.03324 , as well as the return on risk assets = 0.003fr  and the safe return 

on investors = 0.005m . In order to obtain the effective frontier of the BL-KSF ,the risk aversion coefficient 

  is changing here. The smaller the  , the greater the 
1 (1 ) = ED ED
k

F F , which is the higher the risk 

aversion coefficient of investors. Let   vary from 0.01 to 0.20 to find the variety of the optimal portfolio 

return.  



Safety-first model with investor’s view under distribution ambiguity 

International Journal of Business Marketing and Management (IJBMM)        Page 79 

 
Figure  2: The efficient frontiers of KSF and robust 

BL-KSF.( 1 2
ˆ ˆ= 0.05638, = 0.03324, = 0.003, = 0.005  fr m ) 

    The red curve in the Fig. 2 represents the effective frontier of the robust BL-KSF model when the return of 

risk assets with investor views is uncertain, and the blue curve represents the effective boundary of the KSF 

model when the risk asset returns follow elliptic distribution. 

    Obviously, the effective frontier of the robust BL-KSF model is smoother, and the whole is located above 

the effective frontier of the KSF model. It shows that under the same degree of risk aversion, the optimal 

solution of the robust model has a higher portfolio return rate. In other words, corresponding to the same level of 

portfolio return, the optimal solution of the robust model can satisfy a more stringent level of risk aversion. 

Therefore, we can assume that the robust BL-KSF model under under distribution ambiguity has better 

robustness than the KSF model. 

 

V. Conclusion 

     In this paper,we use the black-litterman model to quantify investor views, and show that BL-KSF risk 

measure over distributional ambiguity sets can be computed efficiently via conic optimization techniques. We 

also introduce bootstrapping method for calibrating the levels of ambiguity based to provides an important 

modeling guidance and may be of interest to practitioners. By using simulated market data, we get the results of 

numerical experiments and it demonstrate that our robust methods can construct more diversified portfolios 

which are superior to their non robust counterparts in terms of portfolio stability. We know that a number of 

ambiguity sets on probability distributions under uncertainty have been proposed, however, to the best of our 

knowledge, there seems to be no consensus on whether or not the robust BL-KSF optimization solution under an 

ambiguity set is intrinsically better than the one under an alternative one. It remains an interesting topic that 

deserves to be investigated in future. 
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