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Abstract: In this paper, we construct a Credit Default Swap pricing model for default recovery rates under 

distributional uncertainty based on a structured pricing model and distributional uncertainty theory. The model 

is algorithmically transformed into a solvable semi-definite programming problem using the Lagrangian dual 

method, and the solution of the model is given using the projection interior point method. Finally, an empirical 

analysis is conducted, and the results show that the model constructed in this paper is reasonable and efficient. 
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I. Introduction 

In recent years, Credit Default Swaps(CDS) have become one of the most active financial derivatives 

in the financial markets because of their good characteristics, and the pricing of Credit Default Swaps is one of 

the hot and difficult issues in the field of financial economics. Over the past 20 years or so, researchers have 

focused on solving for default probabilities and have obtained many important results, however, during the 2008 

financial crisis, researchers found that default recovery rates have a profound impact on the pricing models of 

Credit Default Swaps. There are three general approaches to default recovery rates in the current industry: (1) 

Recovery of Face Value where creditors are compensated for a percentage of the value of the bond’s face value 

following a debtor’s default.(2)Recovery of Treasury i.e. after an event of default, the creditor is able to be 

compensated for a percentage of the value of a default-free Treasury bond that is equivalent to the bond, this 

percentage is usually set at 0.4. (3) Recovery of Market Value i.e. the default recovery is assumed to be a 

fraction of the market value of the bond prior to the event of default. 

Such an approach, while easy, is unrealistic and can have a significant impact on the pricing model for 

credit derivatives.So in recent years some scholars have begun to model the distribution of default recovery 

rates, initially with Frye (2000)
 [1]

who fitted the default recovery rate with a normal distribution.Pykhtin (2003)
 

[2]
improved Frye’s model by applying a log-normal distribution to describe the default recovery rate.Rosch 

(2005) 
[3]

proposed fitting the default recovery rate with a Logit-normal distribution. Subsequent research by 

Moody showed that real-life default recovery rates do not exhibit a simple single-peaked distribution, but rather 

a bimodal state, with recovery rates either in the vicinity of b eighty percent or in the vicinity of twenty percent, 

suggesting that the credit default swap prices obtained by choosing the mean of the default recovery rates in the 

model have a large deviation from the actual prices.In this way, the Beta distribution is more suitable for fitting 

the default recovery rate because it takes values in [0,1] and can make the probability density function curve 

show a double-peaked pattern by adjusting the two parameters in the density function, and later scholars mostly 

use this as the basis for modelling the default recovery rate,Chen(1999)
[4] 

used the Beta distribution in 

constructing his credit risk model to fit the default recovery rate.Some scholars have also used the kernel 

function in non-parametric estimation to fit the default recovery.Brown (2004)
 [5]

used the Beta-Bernstein 

polynomial smoothing technique to construct a smoothing kernelto fit the recovery density curve. 

The Distributional Uncertainty Method is a method for dealing with parameters with uncertainty, 

which is solved using optimisation theory by constructing an uncertainty set containing all possible distributions 

of the parameters, constraining the uncertainty set, and then transforming the original problem into a robust 

problem corresponding to the uncertainty set.One of the earliest uses of uncertain stochastic models was by 

Scarf (1958) 
[6]

who used a distribution uncertainty model to solve inventory control problems where only the 

mean and variance of demand were known. Delage and Ye (2010)
[7]

 constructed distribution uncertainty sets for 

mean vectors and covariance matrices from historical data to study the loss function in best worst type 
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distribution robust optimization problems.Calafiore (2006)
[8] 

studied the transformation of the problem into a 

quadratic cone constraint under conditions where only the mean and variance of the parameters are known, 

solving the linear chance control problem under conditions of uncertainty in the distribution. 

This paper constructs a Credit Default Swap pricing model for default recovery rates under 

distributional uncertainty, mainly based on structured models and distributional uncertainty theory. 

Algorithmically, the Lagrangian dual method is used to transform the distributional robust chance constrained 

model into a solvable semi-definite programming problem, and the interior point projection method is used to 

give a solution, which has certain theoretical and practical significance. 

The paper is structured as follows. In the second part, a model for pricing Credit Default Swaps under 

uncertainty in the distribution of default recovery rates is constructed based on a structured model. The third part 

is the empirical analysis, where we use Matlab to numerically calculate the price of Credit Default Swaps under 

uncertainty in the distribution of default recovery rates based on real-life cases of Credit Default Swaps and 

compare it with the actual price to verify the validity of the model. In the last section, we summarize the theories 

and models covered in this paper and give directions for further in-depth research on the Credit Default Swap 

problem based on distribution uncertainty. 

 

II. Model formulation 

In a credit default swap transaction, the purchaser of the default swap must pay a periodic fee (known 

as the credit default swap spread) to the seller of the default swap, usually at the end of every quarter, every six 

months or every year. In the event of a credit-type event (e.g. the bond host is unable to pay), the purchaser of 

the default swap has the right to demand full or partial compensation for losses from the seller of the default 

swap, and if no credit event occurs during the life of the contract, the seller of the default swap does not have to 

pay any money to the purchaser of the default swap and the contract terminates. 

From the above description of the rationale for trading single-asset credit default swaps, we have the 

following pricing model: Consider a single-asset credit default swap contract with an underlying bond of face 

value V.The following are the necessary parameters we have defined. 

(1)The expected recovery rate of the bond in the event of a default by the company is: R. 

(2)The risk-free rate in the market is: r. 

(3)The density of the firm’s probability of default at any moment t during the term of the bond contract is: 

q(t). 

(4)The annual premium to be paid by the purchaser of a default swap to the seller is: s 

(5)The maturity date of the credit default swap contract is: T. 

(6)The time of default of the enterprise occurs at the moment when: . 

Assuming that premiums are paid quarterly, the premium payment moment is 

, so the amount of each premium payment is .At the moment of default , the 

present value of all premiums payable by the purchaser of the default swap to the seller of the default swap is 

 

 

The expectation of the present value of premiums paid by purchasers of default swaps is 

 
 

At the same time, the present value of the payout to the purchaser of the default swap upon the occurrence 

of an event of default at time τ is ,Then the expectation of the present value of the payout is 

 
 

The pricing problem for credit default swaps refers to finding a "fair" price for the current contract before 

the underlying bond defaults, so our objective is to match the payout at default as closely as possible to the 

present value of the premium paid by the purchaser of the contract, i.e. to minimise the hedge. Therefore, the 

objective function in this paper is based on the minimisation of hedging as follows 
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Because of the excellent characteristics of the bimodal Beta distribution, most academics currently use it to 

fit the default recovery rate, but comparative studies have found that the Beta distribution is very sensitive to 

parameters, and the robustness of the model based on the Beta distribution is poor. The true default recovery 

rate is not far from the value obtained from the Beta distribution. Therefore, we use the default recovery rate 

based on the Beta distribution as the criterion to make a CDS pricing model under the uncertainty of the default 

recovery rate distribution.The following assumptions are made first. 

Definition 1.  Random variable R in the asymmetric uncertainty set  
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The parameters ,  control the size of the uncertainty set and the degree of uncertainty We make the 

following chance constraints. 

  

where  is the default recovery rate estimated from the bimodal Beta distribution, b is the degree of 

investor distrust in the bimodal Beta distribution, and  is the probability of safety, given in advance by the 

investor. 

For the chance constraint (2.8), the following proposition can be equivalently transformed into the form of 

a matrix inequality, and in combination with the objective function (2.4) , the initial distributionally robust 

optimization model with an uncertain set of uncertain parameters can eventually be transformed into a 

computationally solvable semi-definite programming problem. Compared to traditional pricing models, this is 

more realistic and more in line with the actual characteristics of the market. 

Theorem 2.1.  The chance constraint with the set  as an uncertain set is equivalent to the set of 

inequalities in the following equation.  

 

 

Proof. The default recovery rate R may be a discrete random variable or a continuous random variable, which is 

treated as a continuous random variable in this paper in order not to lose generality. 

For ease of analysis, we split the uncertainty set .We defines 

  

and defines a family of distributions  as 

  
Thus for the left-hand side of the chance constraint inequality (2.8) there is an equivalent form as follows. 
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For  and its constraints, the following Lagrangian dual form can be 

obtained. 

 

 

Further organizing (2.13) yields 

 

 

where , ,  are Lagrange multipliers. Given , ,  to obtain the minimum of the inner function, the 

product function in equation (2.14) must be non-negative, otherwise the minimum will be taken to negative 

infinity, so for any random variable R we have 

  
After sorting, equation (2.15) is transformed into the following programming problem with constraints. 

 

 
(2.17) 

where the feasible domain of the constraint is 

  

  
Equation (2.18) can be equivalently translated into the following matrix inequality form. 

 

 

Equation (2.19) can be equated as 

  
The equivalent pairwise form to that shown in equation (2.20) is 

  

Equation (2.22) is equivalent to  such that  satisfies the following condition. 

 

 
(2.24) 
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As evidenced above, the left-hand side of the chance constraint (2.8) is equivalent to equation (2.12),For 

 and its constraints can be transformed by Lagrangian methods into an 

optimization problem with equation (2.20) and equation (2.24)as constraints and equation (2.4) as the objective 

function of the optimization problem, so that the chance constraint equation (2.8) is equivalent to equation 

(2.25) below as well as equations (2.20) and (2.24). 

 
 

From equation (4.16), the mean and variance under  satisfy 

 

 
(2.27) 

that is 

 

 
(2.29) 

Bringing equation (2.28), (2.29) into equation (2.25), equation (4.32) is equivalent to 

  
The Lagrangian dyadic approach, combined with the objective function (2.4), leads to the following pricing 

model. 

 

 

 

III. Empirical analysis 

In this chapter, we use one credit risk mitigation warrant in the market for our empirical analysis: the 

18 Origin Water cp002 Joint Credit risk Mitigation warrant. 

To investigate the effect of the parameters of the uncertainty set on the price of the credit default swap 

pricing model, the following parameters are defined Number. 

 
 

where  and  denote the prices of credit default swaps under  and . 

Consider the parameters of the ambiguous set varying in a range of 20 %, i.e. 

 
 

According to the Bootstrapping method, the estimates of  and  can be obtained as 
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Then the parameters  and  vary in the range  and the 

result is shown below 

 
Figure 1. The effect of ambiguous set parameters on CDS prices 

As can be seen from the graph, the prices of CDS are more sensitive to changes in  and change faster in the 

 direction, correspondingly the prices of CDS are less sensitive to changes in  and the slope of credit 

default swap prices in the  direction is significantly greater than the slope in the  direction. 

We use the linear matrix inequality toolkit in Matlab to solve the semi-definite programming problem shown 

in equation (2.31), where we set the investor’s distrust of the bimodal Beta to 0.1, i.e. b = 0.1, the risk-free 

return is set to 0.035, and the probability of investor distrust of the bimodal Beta distribution  is set to 0.05, and 

the results obtained are shown in Fig2. 

 

Figure 2. The effect of parameter  on the optimal strategy  

 

The blue curve in the graph indicates the price of a robust CDS when the distribution of default recovery rates 

is uncertain, while the red curve indicates the price of a CDS when default recovery rates follow a bimodal Beta 

distribution. It is clear that the price of a robust credit default swap lies below the price of a credit default swap 

under the bimodal Beta distribution, indicating that the bimodal Beta distribution overestimates the price of a 

credit default swap, which can result in larger losses to investors in the event of a bias in the default recovery 

rate. 

This is next compared to the actual price, and the stock price for Origin Water from November 19, 2018 to 

November 19, 2019 is chosen for this paper, and then estimates of other parameters are obtained based on 

previous research, with the following results. 
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Measurement results 

CDS prices under a bimodal Beta distribution CDS prices under distributional uncertainty Market offer 

1.32 1.11 1.08 

  

IV. Summary and prospect 
In the pricing of Credit Default Swaps, the estimated value of the default recovery rate is obtained by 

estimating the probability distribution assumed in advance, but in real markets, the distribution of default 

recovery rates is affected by a variety of factors and investors are often unable to use the limited information 

available to obtain the exact probability distribution of default recovery rates. It is based on these practical 

factors that we introduce uncertain distributions into portfolios and develop a pricing model for credit default 

swaps under uncertain distributions of default recovery rates. Finally, based on Matlab numerical calculations, 

we solve for the prices of Credit Default Swaps under uncertain distributions in conjunction with actual cases, 

giving optimal results and comparing them with actual results to verify the validity of the model. 

Due to the limitations of the author’s own professional level, the problems studied in this paper still 

have shortcomings and need to be improved: for example, when constructing the distribution uncertainty set, 

higher-order and more refined uncertainty sets can be introduced; this paper assumes that the default probability 

and default recovery rate are independent of each other for the sake of computational simplicity, and the 

correlation between these two random variables can be considered; in addition, a more complex process of 

enterprise asset value can be considered. For the above shortcomings, we hope that future scholars will do 

further research. 
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