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Abstract : Due to the limited size of the insurance market, insurance companies usually purchase insurance 

from a few reinsurance companies with large differences. At this time, using the Vasicek model to describe the 

counterparty credit risk will be inaccurate; besides, the insurance company’s understanding of the counterparty 

default threshold distribution is incomplete, which makes it difficult to effectively determine the counterparty 

default probability. Therefore, the assumption that the default threshold distribution obeys a uniform 

distribution is inaccurate. This paper focuses on the issue of reinsurance counterparty credit risk and optimal 

capital supervision under distribution uncertaity. Based on the method of WCVaR,the credit risk measurement 

model of the reinsurance counterparty is constructed; then under default threshold distribution uncertainty, the 

default probability estimate is given, thereby giving the corresponding optimal regulatory capital estimate; 

finally, simulation analysis is used to compare the revised model with the historical model to verify the 

rationality and validity of the model. 
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I. Introduction 

Reinsurance business is a derivative form of insurance. Reinsurance companies are also known as 

counterparties of a given insurance company. In the process of reinsurance, insurance companies must guard 

against counterparty credit risks. Therefore, studying the credit risk of the counterparty and clarifying the 

regulatory capital of the reinsurance counterparty has important theoretical and practical significance for 

promoting the long-term and healthy development of reinsurance business in our country.  

As we know, due to the limited size of the insurance market, insurance companies usually purchase 

insurance from a few reinsurance companies with large differences. At this time, using the Vasicek model to 

describe the counterparty credit risk will be inaccurate; secondly, considering the actual reinsurance process, 

one of the prerequisites for insurance companies to measure counterparty credit risk is the known probability of 

default. In previous studies, the credit rating of an authoritative institution was often used as the basis for 

judging the company's default probability. However, since Yongmei, Brilliance, Ziguang and other AAA high-

credit rating state-owned enterprise bonds defaulted one after another, "rating inaccuracy" has been frequently 

exposed to the public as a normal state, which has seriously affected investors' decision-making and judgment. 

That is to say, the insurance company's understanding of the counterparty default threshold distribution is 

incomplete, which makes it difficult to effectively determine the counterparty default probability. Therefore, the 

assumption that the default threshold distribution obeys a uniform distribution is inaccurate. 

Ter Berg [1] and Sandstrom [2] proposed a common shock method, which can describe the credit risk 

of reinsurance counterparties using a given variety of default losses. This common shock will affect the 

possibility of a particular reinsurance company defaulting, and it will also affect the correlation between them. It 

is promoted in Hendrych et al. [3] and can be used to calculate the regulatory capital requirements for 

preventing credit risk to cover the credit risk in portfolios with fewer heterogeneous counterparties. 

Although many well-known scholars have discussed the optimal reinsurance and investment issues, 

only a few scholars have considered the uncertainty of the model. In fact, the rate of return of risky assets is 

difficult to accurately estimate, and for risk-preferred insurance companies, model parameters and expected 
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losses also have the same uncertainty. Therefore, some scholars have proposed and studied the influence of 

model uncertainty on the corresponding optimal investment portfolio problem of investors or insurance 

companies. The methods to solve the uncertainty of the model are now mainly robust and games (including 

zero-sum games and non-zero-sum games). Kang et al. [4] combined a robust data-driven method to construct a 

set with fuzzy mean and variance, proving that the robust investment portfolio constructed under the condition 

of uncertain distribution is still superior.  

This paper focuses on the issue of reinsurance counterparty credit risk and optimal capital supervision 

under distribution uncertainty. Based on the method of WCVaR, the credit risk measurement model of the 

reinsurance counterparty is constructed; then under default threshold distribution uncertainty, the default 

probability estimate is given, thereby giving the corresponding optimal regulatory capital estimate; Finally, 

simulation analysis is used to compare the revised model with the historical model to verify the rationality and 

validity of the model. 

II. Preliminaries 

In the traditional Markowitz mean-variance model, risk can be quantified by the variance of loss. But 

for credit risk, its asymmetry is very significant, so the loss distribution is asymmetric and highly skewed, which 

does not satisfy the assumption that the model loss follows a normal distribution. Therefore, scholars revised it 

and proposed the VaR method. 

VaR is the abbreviation of Value-at-Risk. In general, assuming that at the confidence level  , the 

probability of risk loss L  does not exceed, the confidence level 0,1 （ ）, VaR can be expressed as:  

VaR ( ) inf{ : Prob{ } }x L        

Because VaR does not necessarily satisfy subadditivity, the academic community proposed CVaR in 

2000, which is called Conditional Vaule-at-Risk. It is defined as the average value of the tail distribution 

exceeding VaR under a certain confidence level and within the holding period:  

 CVaR ( ) [ | VaR ( )]x E L L x    (1) 

Let ( , )L x y  denote the credit risk loss, where x  is the decision vector, which denotes the weight of 

credit assets in the financial asset portfolio; y  is a random vector. Suppose that y  obeys a continuous 

distribution, and express its density function as ( )p  , which CVaR ( )x
 can be expressed as the expected loss 

value exceeding VaR ( )x
: 

( , ) VaR ( )

1
CVaR ( ) ( , ) ( )d

1 L x y x
x L x y p y y




 


   

Uryasev and Rockafellar [5] showed   max{0, }t t

 , and CVaR can be calculated by minimizing the 

function: 

 CVaR ( ) min ( , )x F x 





  (2) 

Using enumerated methods, the approximate value of ( , )F x   can be expressed as: 

[ ] +

1

1
( , ) [ ( , ) ]

(1 )

S
k

k

F x L x y
S

   
 

  


   

Where S  represents the number of samples, and [ ]ky  represents the k  sample. According to the statistical 

law of large numbers, when the sample size S  reaches infinity, the empirical mean ( , )F x   converges to 

( , )F x  . 

Because the premise of using CVaR for risk measurement is to know the loss distribution, if there is no 

information about the y  obedience distribution, then it is impossible to calculate the exact value of ( , )F x  . 

Assuming that only the distribution function belongs to a certain set , that is ( )P   , then for a fixed x X , 

the worst-case CVaR (Worst-case CVaR) can be defined as: 

 
( )

WCVaR ( ) sup CVaR ( )
P

x x 
 

  (3) 
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Which is : 

 
( )

WCVaR ( ) sup min ( , )
RP

x F x 



 

  (4) 

 

III. Construction of Reinsurance Company Credit Risk Measurement  

Modified Model Based on WCVaR Method 

In this subsection, this article first gives the calculation method of the combined credit risk loss of 

reinsurance counterparties. Then, based on the characteristics of the loss, based on the WCVaR method, a 

modified model of the signal risk measurement of reinsurance counterparties is constructed. 

3.1 Characteristics of distribution of credit risk loss of reinsurance counterparty portfolio 

With reference to Sandstrom et al., we assume that there are i  counterparties in the entire reinsurance 

portfolio, 1,...,i k . The default process is described by 
iLGD  and 

ip : where 
iLGD  is the specific loss 

percentage after the default of the counterparty’s risk exposure, referred to as the loss given default; 
ip  is the 

default probability of the i  counterparty. If the counterparty i  does not default, then 0ip  , vice versa 0ip  . 

Loss given default rate and probability of default are two random variables that are not independent of each 

other. 

At this time, the loss L  caused by the default in the combination can be expressed as: 

 
1

n

i i

i

L LGD p


   (5) 

Then we can know that the mean value of loss L  satisfies: 

 1 1

1

( ) ( ) [ ( ) ( ) ( , )]

        [ ( ) ( ) ( ) ( )]

n n

i i i i i i

i i

n

i i i i i

i

E L E LGD p E LGD E p Cov LGD p

E LGD E p LGD p  

 



    

    

 



 (6) 

The covariance satisfies: 

 

1 1

1 1

1 1

( ) ( , )

        [ ( , ) ( ) ( )]

         = [ ( , ) [ ( ) ( )

           ( ) ( )] [ ( ) ( ) (

n n

i i j j

i j

n n

i i j j i i j j

i j

n n

i i j j i i

i j

i i i j j j

L LGD p LGD p

E LGD p LGD p E LGD p E LGD p

E LGD p LGD p E LGD E p

LGD p E LGD E p LG    

 

 

 

    

      

   

      







) ( )]j jD p

 (7) 

i represents the Pearson correlation coefficient between the default loss rate and the default probability of 

the counterparty.  

3.2 Construction of a modified model based on WCVaR under distribution uncertainty 

Combined with the research of Hendrych et al.,   is the confidence level, 0 1  , and C  is the 

selected minimum downward threshold. Now substitute the credit risk loss function into the formula of 

regulatory capital ( )RC L
, and establish a relationship with VaR credit risk value: 

 
1

( ) ( | ) ( , | ( ))
k

B

i i

i

RC L E L L C E LGD PD L VaR L 


     (8) 

Assuming that L  obeys an uncertain distribution family , that is ~ ( )L D   , the mean and the 

covariance satisfies ( )E L   and ( )L   . If the support set of L  is covers the entire space, that is =Rn , 
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then it can be derived { | [( ) ] 1, ( ) , ( ) }D M P L E L L        ,According to formula (1) and formula 

(8), we obtain the formula of minimum regulatory capital RC ( )L
: 

 
( )

min RC ( ) sup ( )
D

L CVaR L 
 

  (9) 

Lim et al. [6] showed that if the loss distribution is mis specified, then CVaR is sensitive to it, and they also 

demonstrated the vulnerability associated with CVaR minimization. This vulnerability needs to be improved 

with a robust distribution method. Therefore, according to formula (2), the WCVaR measurement method is 

introduced and expressed as: 

 
( )

WCVaR ( ) max CVaR ( )
D

L L 
 

  (10) 

We use W-RC ( )L
 to represent the optimal regulatory capital under the loss distribution uncertainty, and 

the revised model of the WCVaR-based reinsurance counterparty credit risk measurement WRC-  is: 

 
( )

(WRC- ) : W-RC ( )=WCVaR ( ) max CVaR ( )
D

L L L  
 

  (11) 

 

IV. Valuation Process Of Optimal Regulatory Capital Of Reinsurance  

Counterparties 

This section first revises PD that the default threshold obeys a uniform distribution, and finds its 

estimate based on the default threshold distribution uncertainty. Secondly, revises the constant default loss rate 

to random LGD. Then, the asymmetry and non-linear correlation between the two random variables, PD with 

distribution uncertainty and the random LGD, are again considered, and their correlation is measured using the 

generalized correlation coefficient GMC. Finally based on the above theory, the optimal regulatory capital 

valuation for the credit risk of the reinsurance counterparty is studied and given.  

4.1 Estimation of Reinsurance Counterparty Default Probability under the Default Threshold Distribution  

In chapter 3.1, we gave a calculation method for the combined credit risk loss of reinsurance counterparties. 

It can be observed that the probability of default 
ip  is a parameter that needs to be processed based on sample 

data. However, in most previous literatures on credit risk of reinsurance counterparties, external credit ratings 

provided by specialized agencies are generally used.  

In order to ensure the accuracy and usability of the loss calculation, we refer to the models of Giesecke et 

al.[7] and Kang et al.[4] below to modify the probability of default that the default threshold distribution obeys a 

uniform distribution, so that it can still be calculated under the assumption that the default threshold distribution 

uncertainty. In addition, we also referred to ter Berg [1] and added the common shock variable to ensure that it 

is still applicable in the reinsurance field. 

4.1.1 PD Subject to Prior Distribution 

In the real financial environment, due to future market uncertainty and asymmetry in investment 

information, different insurance companies have different income forecasts when making reinsurance decisions, 

which leads to different insurance companies’ expectations for the distribution of counterparty default 

thresholds.  

. Assuming that at zero time, the counterparty issues a discount bond with a holding time of T , then there 

is a possibility of default before maturity. The insurance company expects that the reinsurance counterparty will 

default. If k  is used to represent the asset value, when 
tV k , the insurance company expects that the 

counterparty will default when the value of the enterprise's assets is k  at this time. K  is the default threshold. It 

means that the insurance company expects the logarithmic growth rate of the asset value of the reinsurance 

counterparty. Due to the divergence in the forecast of the income, K  is not a constant. So 
0

Kk V e , k  is also 

not a constant.  

According to the hypothesis of Giesecke et al. [7] in the study, k is an unobservable continuous random 

variable and obeys a prior probability distribution ( )D  . The insurance company only includes the bond prices 
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disclosed by the counterparty and the information whether there is a default, which is expressed as a right 

continuous filter ( : )t t sL N s t L   G .
tG  represents the total information filtering of the insurance 

company on the reinsurance counterparty bond price, asset value, default status, and income forecast divergence. 

Define the first arrival time 
x  as inf{ 0 : }x tt V x    .Then there is a trans Gaussian process

( ) (min )x s tP t P V x     . Further referring to Karatzas and Shreve [8], we have obtained the specific 

distribution density ( , )f t x  of the first arrival time 
x . We use   to represent the maximum possible value 

of the company’s asset value at the time of default, and substitute it into the default probability 
ip  of the 

counterparty i : 

 0

( ) 1
[ | ] 1 [ | ] 1 ( ) ( , )

( ) ( )

tH
T x

i t t t

t t

D H
p P T E D y f T t y H dy

D H D H







       G G  (12) 

4.1.2 The baseline PD under the default threshold distribution uncertainty 

In Giesecke et al.[7], when investors in the market expect a company to default, its asset value k  obeys a 

uniform distribution on 
0[0, ]X  and satisfies 

0e
Kk V . At this time, the prior distribution is ( ) xD x e . However, 

this is only an assumption for a rational market. In fact, in the real financial market, it is impossible for the 

enterprise value to be zero when the counterparty declares default, and it is almost impossible to obtain extreme 

values close to both sides of the distribution. In addition, it is impossible to be within the range of corporate 

asset values 
0[0, ]V . Each value has the same number of insurance companies that are expected to default. The 

company’s asset status and investor confidence will affect the insurance company’s decision-making 

expectations for default. The experimental distribution ( )D   is uncertain. 

This article refers to the uncertainty set of moment information defined by Delage and Ye [9], combined 

with the portfolio model under distribution uncertainty of Kang [4]. In this paper, the distribution uncertainty 

theory is applied to the field of credit risk, and the probability of default model when the counterparty default 

threshold distribution is uncertain. 

Let 
k  denote the expected mean value of the asset value of the insurance company when the counterparty 

defaults, and 
k  denote the expected covariance of the asset value. Assuming that the prior distribution ( )D   is 

an uncertain distribution , the distribution only knows part of the moment information, and the set of 

uncertain distributions 
1 2( , )  is defined as: 

 

1

1

1 2

2

[ ] [ ]
( , )

, 0

T

k k k k k

k k k

    
 



     
  

     

 (13) 

0e
Kk X , which represents the default threshold of the counterparty. 

Given the sample mean vector ˆ n

k R  and sample covariance matrix ˆ n n

k R   , the parameters 
1 and 

2

determine the size of the uncertainty set, which is a measure of the uncertainty of the expected return 
k and 

covariance estimation 
k . They provide a way to quantify people's true values of 

1  and 
2 . Through 

1 and 

2  construct the set of uncertain distributions that the default threshold obeys k . The meaning of this set is to 

construct an ellipsoid set with and as the radius according to the known parameters. We call the positive 

parameters 
1 and 

2  the uncertainty level, which can be estimated based on the sample observations of the 

default threshold.  

Therefore, when the default threshold distribution is uncertain, the default probability model of the 

counterparty i can be expressed as: 

 0

1 2 1 2 ( ) ( , , , )  ( ) ( , , , )

1
max max [1 ( ) ( , ) ]

( )

t

k k k k

H
x

i t
D D

t

p D y f T t y H dy
D H



     



     
     (14) 
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When the equal sign is taken in 
1 2( , )  , formula (14) obtains the maximum value, which is the maximum 

probability of default 
ip . We consider it to be the benchmark default probability, namely: 

 0

1
1 ( ) ( , ) ]

( )

tH
x

i t

t

p D y f T t y H dy
D H





     (15) 

Where ( )D   is the set of uncertain distributions subject to k , then the mean and covariance of 
ip  satisfy: 

 
1+k k     (16) 

 
2k k nE      (17)  

4.1.3 The modified PD added to the common shock variable 

With reference to ter Berg [1] and Sandstrom [2], a good description of the credit risk of reinsurance 

counterparties is to consider combining a random variable called common shock. The random variable of this 

common shock will not only affect the probability of default of a particular reinsurance company, but also affect 

the correlation between reinsurance portfolios. This section will briefly describe this method and try to introduce 

it to modify the above-mentioned benchmark probability of default 
ip  based on the distribution uncertainty, so 

as to ensure that the modified probability of default 
iPD  is still applicable in the field of reinsurance. 

The reinsurers of an insurance company are often impacted by the real environment, such as financial 

crises caused by economic recession, changes or reforms of relevant laws, and natural disasters. We call this a 

common impact, which is represented by a random variable S. The numerical range is 0 1S  . When S rises 

from 0 to 1, it means that the common shock of a given event on the insurer has changed from very low to 

higher. The degree of change of S can be expressed by the probability density function of the following form, 
1( | ) ,  0 1f S S S     , 0 1  .  

The common shock S will determine the probability of default PD . In ter Berg [1], the functional 

relationship between the two is set as: 

 /
( ) (1 ) ,     0 1ip

i i iPD s p p s s


      (18) 

Among them 
ip  is the basic level of the default probability of the i  counterparty ( 1,2,...,i n ) in the 

reinsurance portfolio (the value after excluding the influence of the common shock S), which is the benchmark 

default probability under distribution uncertainty described above. 

By using the probability density function ( | )f s   of S to integrate the modified default probability 

function ( )iPD s , the expected value of the default probability 
iPD  of the i  counterparty is: 

 
1 1

/ 1

0 0

( / 1)
( ( )) ( ) ( | ) [ (1 ) ]

1 /
ip i

i i i i i

i

p
PD E PD D PD s f s ds p p s s ds

p

 


 


  

       
    (19) 

Substituting equation (19) into equation (15), then 
iPD  based on distribution uncertainty and common shock 

can be shown as : 

 

0

0

1
( / 1) [1 ( ) ( , ) ]

( / 1) ( )

1 / 1
1 / [1 ( ) ( , ) ]

( )

t

t

H
x

t

i t

i
H

i x
t

t

D y f T t y H dy
p D H

PD
p

D y f T t y H dy
D H





 
 

 
 









    
 

 
 

    





 (20) 

Where 0 1  , 0 1  . The prior distribution ( )D   is obtained according to the estimation of the uncertain 

set , and its mean and covariance satisfy equations (16) and (17).  

4.2 Estimate of Random LGD and Correlation Coefficient 

In Hendrych et al.[3], LGD is generally simply defined as 1/ N , without considering the possible 

distribution of the default loss rate. This is obviously not in line with the real environment, and it is extremely 

easy to cause errors in the measurement of credit risk. This paper refers to the latest research results of Moody 
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Company, the LGD presents a bimodal distribution. Therefore, it can be guessed that the LGD of reinsurance 

companies also conforms to the bimodal beta distribution.  

In the past research, Pearson's correlation coefficient has been the most important correlation measure used 

in many studies since it began to pay attention to the correlation between random variables. But it have great 

limitations such as it cannot explain the asymmetry of the variance between nonlinearly correlated random 

variables. 

Since the distribution of the probability of default PD  in this paper is uncertain, and the mean and 

covariance of the distribution are determined to belong to an uncertain set of moment information, the 

distribution can be regarded as a group. However, BLGD  obeys the exact distribution, so the problem that 

needs to be solved is the asymmetry and nonlinear correlation between the uncertain distribution and the certain 

distribution. 

This article refers to the correlation measurement method proposed by Zheng et al. [10]: Generalized 

Correlation Coefficient (GMC). Assuming BLGD  is a random variable X , PD  is a random variable Y . Let 

G  be the generalized correlation coefficient GMC, then we have: 

2var( ( | )) (var( | )) [( var( | )) ]
( | ) 1 1

var( ) var( ) var( )
G

E Y X E Y X E X Y X
GMC Y X

Y Y Y



       (21) 

Chen et al. [11] gives the non-parametric estimate of 
G . 

4.3 Valuation of optimal regulatory capital for reinsurance counterparties 

According to equation (5), as well as PD  and BLGD , let the reinsurance counterparty portfolio credit 

risk loss be: 

1

n
B

i i

i

L LGD PD


   

It can be seen from Section 4.2 that BLGD  obeys the bimodal beta distribution, so it is recorded as 

( )B

i BE LGD  , 2 2( )B

i BLGD  ; the distribution of PD  is uncertain, so it is recorded as ( )iE PD  , 

2 2( )iPD  ; the correlation coefficient between BLGD  and PD  is corrected to GMC 
G , then it can be 

seen that the mean value of L  satisfies: 

 
1 1

( ) [ ( ) ( ) ( ) ( )] [ ]
n n

i i i i i B G B

i i

E L E LGD E PD LGD PD       
 

            (22) 

Let 
i iLGD PD x  , =yj jLGD PD , then the covariance satisfies: 
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    

    

 

 

      

     

       

     



 

1 1

n n

i j 



 (23) 

( , )f x y  is the joint probability density between 
iL  of the counterparty i  and 

jL  of the counterparty j , 

estimated by the Copula function, and C  is the expected joint distribution of 
iL  and 

jL . 

For the convenience of analysis, we modify the form of the probability of default according to formula (20), 

which   is defined as the mean value of the probability of default, that is ( )iE PD  ,   is the covariance 

of the probability of default, ( )iPD   , then the probability of default also obeys the uncertain distribution 

family, and then define the following set: 

1

ˆ 1 2ˆ( , )
{( , ) | ( ) ( ) , , 0}n TU


      


            



Reinsurance Counterparty Credit Risk and Optimal Regulatory Capital under Distribution …. 

International Journal of Business Marketing and Management (IJBMM)                    Page 49 

Since the modified default probability 
iPD  obeys the uncertain distribution family , it can be known that 

under the condition of ( , ) n   , its mean and covariance satisfy: 

1

1 2( ) ( ) , , 0T              

Which is:  

1 1 2+ ,0 nE                

Since the distribution of BLGD  is determined and PD  is uncertain, the distribution of credit risk loss is 

also uncertain. Then from equation (3.16) we know that the credit risk loss function L  obeys the distribution 

family , and  is related to PD  distribution family 
1 2( , )  , that is 

1 2~ ( ) ( , )L D    , ( )E L  , 

( )L   , then the model WRC-  we give in equation (11) can be expressed as 
1 2WRC- ( , )  , and 

according to above formulas, the distribution characteristics of L  can be expressed as follows: 
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 

 

 
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         

     

 





 (24) 

Lemma 4.1 [12] Assuming that L  is the risk loss, satisfies ( )E L  , ( )L   , let   be the benchmark loss 

and   , the confidence level 0 1  , then the following formula holds: 

 
2

~( , )

( )
sup [( ) ]

2L

E L


   
 



    
   (25) 

Proposition 4.1 L  is assumed to be risk loss, satisfying
1

n
B

i i

i

L LGD PD


  , BLGD  obey the bimodal beta 

distribution, ( )B

i BE LGD  , 2 2( )B

i BLGD  , PD  obey the uncertain distribution family 
1 2( , )  , satisfy 

( )iE PD  , 2 2( )iPD  , so L  obey the uncertain distribution family 
1 2( , )  , ( )E L  , ( )L   , 

( , )i jC E L L . Then based on the uncertainty of the default threshold distribution and the random default loss 

rate, the optimal regulatory capital valuation of the reinsurer's credit risk is: 
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
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
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 (26) 

where 1   is the confidence level, 0 1  ; n  is the number of counterparties, 1,...,i n , 1,...,j n . 

 

Proof: In order to facilitate analysis, we define according to formula (30): 

 2 2

( , )
1 1 1 1 1 1

{( , ) | , ( ) ( )}
n n n n n n

n

i i i j i j

U A B C B C A


 


     

              (27) 

Where: 

1( )BA       , 
1 2( + ) ( )B G B nB E            

For the 
1 2WRC- ( , )   model, we first let it take the supremum relative to D  （）  avoid that its maximum 

value does not exist, and then relative to the maximum in the uncertain set ( , )  , we get: 

 
1 2 ( , )

( ) ( , ) ( , ) ( )

W-RC ( ) max CVaR ( ) max sup CVaR ( )
D U D

L L L


  
  


     

   (28) 

From equation (1), we know: 
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1 1

CVaR ( ) min ( , )= min{ [ ] ( )d }= min{ E[ ] }
1 1

L F L L p y L 
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From Lemma 4.1 and formula (29), formula (28) can be reduced to: 
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Let: 

21
( ) [ + ( ) ]

2(1 )
h      


     
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Take the first-order derivation of ( )h   about  , and let ( ) 0h   , then at the ( )h   minimum, the optimal 

value of   is: 
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Substituting in ( )h   and get: 
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Substitute the minimum value *( )h  of ( )h  into the formula (30), then: 
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 (31) 

Among them, it can be seen from formula (33): 

 2 2

1 1 1 1 1 1
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In formula (31), since the objective function and the constraint set are independent of each other, the original 

optimization problem can be solved by two independent optimization problems. 

From the formula (32), we know: 
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Then the formula (31) can be transformed into: 
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The formula (28) is: 

 

( , )
( , ) ( )

1 2

1

2

1

1 1

W-RC ( ) max sup CVaR ( )

                 [ ( + ) ( )]
1

1
                 [ ( )]

U D

n

B G B n

i

n n

B

i j

L L

E

C



 



    




  




   



 



        



     





 (34) 

The certificate is complete. 

Remark 4.1 (1) The uncertainty level 
1  and 

2  are estimated by the Bootstrapping algorithm through sample 

data, and then the distribution characteristics of the uncertainty distribution family that PD  obeys are obtained; 

(2) Through MLE of the bimodal beta distribution parameters of LGD , the probability density function 

obtained is substituted into the sample data, and the specific values of the sample mean 
B  and covariance 

B  

can be obtained; (3) The generalized correlation coefficient GMC can be obtained by smoothing the kernel 

density after processing the sample data. 

 

V. Simulation analysis 

In this section, we will use the Matlab program simulation, referring to the numerical simulation of 

Hürlimann (2008), mainly for the three cases of Vasicek limit probability distribution, the default threshold 

obeys a uniform distribution, and the default threshold distribution is uncertain. When analyzing and calculating 

the optimal regulatory capital, refer to Hendrych (2019), we order / 4   . This article mainly focuses on the 

reinsurance portfolio of N counterparties, where N is a positive integer and 20N  , and the confidence level 

1   is 0.95. 

Assuming the company’s initial asset value following 
0 [60,100]V   and current t  time company’s 

value following [40,120]tV  , then we can obtain that the company’s asset value process 
tW  at the t time, 

maturity time 1T  , short-term liabilities [20,60]SD , long-term liabilities [20,80]TD , default threshold 

=90 , and annualized stock fluctuations 2 [0.2,0.6]   in the last two weeks. The uncertainty intensity is 

always 1. At this time, the mean  and variance 2  of the counterparty sample distribution can be obtained to 

obtain the default probability of each counterparty. At the same time, the bimodal beta distribution is used to 

simulate the default loss rate of the counterparty  

.Due to space limitations, the default probability and random loss given default rate when the distribution 

of default thresholds of all counterparties are uncertain are not listed. Some data are shown in table 1: 

Table 1 Counterparty's parameters and probability of default 
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The number of samples of PD in the sample is 20, of which the maximum is 0.3063, the minimum is 

0.0132, and the average is 0.1561; the number of samples of LGD is 20, of which the maximum is 0.8826 and 

the minimum is 0.0572. The average value is 0.4316. It can be seen that the probability of default and loss given 

default rate are positively correlated in the sample. 

In order to compare the different performances of counterparties with different default probabilities, this 

paper ranks the default probabilities of each counterparty in the subsequent simulations, and uses three methods 

to gradually add each counterparty to the reinsurance portfolio. These three methods are the probability of 

default from large to small, the probability of default from small to large, and the probability of default is 

randomly added. 

For example, the first method refers to: when there is only one counterparty in the combination, the default 

probability of the counterparty is 0.3063, which is the largest among the 20 counterparties. When there are two 

counterparties in the combination, it will be added to the ranking second. The counterparty with a probability of 

default of 0.2844, and so on, finally formed a reinsurance portfolio with 20 counterparties. 

(1) Case 1 

The counterparties are added to the portfolio by using the probability of default in descending order. Under 

the common shock and random default loss rate, the optimal regulatory capital of the reinsurance counterparty 

under the situation of uncertain default threshold distribution can be obtained, compared with the credit risk 

measurement model that obeys the Vasicek probability distribution and the credit risk measurement model that 

the default threshold distribution under the common shock obeys the normal distribution: 

 

Figure 1 Under case 1 the optimal regulatory capital of the reinsurance portfolio varies with the number of 

counterparties in each model 

As Fig.1 shows, the optimal regulatory capital measurement model with default threshold distribution 

uncertainty under common shocks constructed in this paper works well, and it is compatible with the credit risk 

Number of counterparties

Index

V0 65.91 68.01 65.55 67.76 66.87 … 62.31

Vt 58.49 71.02 95.18 108.12 78.30 … 48.42

SD 29.33 42.59 40.98 20.52 21.77 … 34.15

TD 26.55 46.81 27.34 20.81 20.69 … 43.38

σw
2 0.32 0.33 0.25 0.49 0.55 … 0.57

µQ 72.61 66.00 54.65 30.93 32.12 … 55.84

Σq 385.50 425.72 395.69 579.59 631.40 … 652.45

PD 0.1675 0.0971 0.0704 0.2586 0.2824 … 0.3044

LGD 0.2733 0.0776 0.1299 0.8480 0.7626 0.8826

… 201 2 3 4 5
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measurement model that obeys the Vasicek probability distribution and the default threshold distribution under 

common shocks that obey the normal distribution. Compared with the credit risk measurement model, the 

optimal regulatory capital can better cover the largest tail loss in the reinsurance portfolio. In addition, it can be 

seen from the image of the model constructed in this article that when there are fewer counterparties, the value 

of the optimal regulatory capital basically fluctuates around 0.8, and when there are more counterparties, it will 

show a downward trend, so this also shows that the model is more suitable for measuring reinsurance portfolios 

with fewer counterparties.  

(2) Case 2 

Use the approach of increasing the probability of default to add counterparties to the portfolio. Under 

the common shock and random default loss rate, the optimal regulatory capital of the reinsurance counterparty 

when the default threshold distribution is uncertain is obtained, and compared with the historical model: 

 

Figure 2：Under case 2 the optimal regulatory capital of the reinsurance portfolio varies with the number of 

counterparties in each model 

As Fig.2 shows, the optimal regulatory capital measurement model with uncertain default threshold 

distribution under common shocks constructed in this paper is less effective than the other two historical models, 

and fluctuates the most. The guess may be due to the higher probability of default. The addition of 

counterparties makes the risk of the model rise faster, so the optimal regulatory capital increases significantly. 

When analyzing scenarios with fewer counterparties, the model constructed in this paper requires the lowest 

optimal regulatory capital, which proves that when the counterparty’s default probability is low, the model can 

well control the credit risk of reinsurance counterparties. 

(3) Case 3 

Finally, the counterparty is added to the portfolio using the random probability of default method. Under 

the common shock and random default loss rate, the optimal regulatory capital of the reinsurance counterparty 

when the default threshold distribution is uncertain is obtained, and compared with the historical model. 
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Figure 3：Under case 3 the optimal regulatory capital of the reinsurance portfolio varies with the number of 

counterparties in each model 

As Fig.3 shows, the optimal regulatory capital measurement model with uncertain default threshold 

distribution under common shocks is similar to scenario 2 when the counterparty is randomly added. The 

optimal regulatory capital is lower when there are fewer counterparties, and when there is default When a 

counterparty with a higher probability joins, it will rise sharply and then decline to gradually stabilize, and show 

a downward trend. In this process, the optimal regulatory capital is higher than the other two historical models. 

This also shows that the model can well control the credit risk in the counterparty reinsurance portfolio and 

cover the maximum tail loss in the reinsurance portfolio when there are fewer counterparties. 

 

VI. Conclusion 

Reinsurance is a derivative form of insurance. Since reinsurance is generally a risk with high volatility 

and over-insurance, the insurance business contracted by insurance companies exceeds the risk range that they 

can bear. Risks are sub-insured to transfer part of the risks, and the insurance company that takes over is the 

reinsurance company. These reinsurance companies can be referred to as counterparties of a given insurance 

company. In the process of reinsurance, insurance companies must guard against counterparty credit risks. 

Counterparty credit risk is a type of credit risk, which refers to the risk that the counterparty does not pay 

according to the contract requirements before the final cash flow payment stipulated in the contract, and then 

breaches the contract. 

As a new regulatory risk stipulated by formal regulations in Europe in recent years, and cases of credit risk 

have emerged in my country recently, this article has carried out effective risk management and accurate 

measurement on it. This paper focuses on the issue of reinsurance counterparty credit risk and optimal capital 

supervision under distribution uncertainty. Based on the method of WCVaR, the credit risk measurement model 

of the reinsurance counterparty is constructed; then under default threshold distribution uncertainty, the default 

probability estimate is given, thereby giving the corresponding optimal regulatory capital estimate; Finally, 

simulation analysis is used to compare the revised model with the historical model to verify the rationality and 

validity of the model. 
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