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Abstract : Zhang [3] studied the European option pricing problem when the underlying asset follows the 

geometric Riemannian Brownian motion. Motivated by [3], we, in this paper, investigate the asian option 

on Riemannian manifolds. By exploring the relationship between Riemannian Brownian motion on Rieman- 

nian manifolds and Euclidean Brownian motion, we derive the pricing equation of the geometric average 

asian option on Riemannian manifolds, and provide a semi-explicit expression for the solution by using the 

fundamental solution.            
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I. INTRODUCTION 

 

In 1973, under some assumptions, Black and Scholes[7] obtained a relatively complete option pricing 

formula (Black-Scholes formula) by constructing the stochastic differential equations of the underlying asset 

price and applying the method of Risk Hedging. However, too many assumptions result in some errors between 

the option value obtained from the Black-Scholes formula and the actual data in the financial market. In order to 

solve this problem, researchers made further research in combination with the real market, most of them relaxed 

the assumptions of the Black-Scholes model. In the assumptions of Black- Scholes model, the change of stock 

price is continuous, which means the diffusion process of stock price obeys lognormal distribution. But in the 

real world, there will always be some important information that leads to dramatic change in stock price process, 

and then the stock price will change intermittently, such as jumping. Based on this consideration, in 1975, 

Merton[18] established a different diffusion process of stock price, namely jump diffusion model. In this model, 

Merton added the position process to the option pricing model. In 1987, hull and white[4] approximated the 

average value of each node of the binary treeby adding nodes and using the method of linear interpolation, and 

finally calculated the option price by the method of backward discount. 

In 1990, Kemna and Vorst[25] obtained an analytic formula of geometric average option pricing by 

changing the volatility of asset price and the execution price of option contract. In 1991, Elias Stein and Jeremy 

Stein[14] assumed that volatility was driven by the arithmetic process of Ornstein-Uhlenbeck, and derived the 

option pricing by double integration. In 1992, Edmond lévy[23] used geometric Brownian motion to describe 

the arithmetical average distribution of price and transformed the pricing problem of Asian option into that of 

European option so that a more accurate approximation was obtained. In 1998, after further exploration, 

Varikooty, Jha and Chalasani[16] solved the pricing problem of Asian option in the discrete case by using the 

trident tree method. In 1999, Chan[11] replaced Brownian motion with a general Lévy process, and obtained an 

integral differential equation about the option price. 
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In 2001, Jin E. Zhang[19] obtained a semi-explicit expression of the pricing formula of the arithmetic 

mean Asian option with fixed strike price. In addition, he calculated it by numerical method and got good 

numerical results. The expressions of solutions in some feasible regions do exist, which, however, was not fully 

utilized. In 2002, Ju[24] put forward a complex option pricing method. He used the average characteristic 

function of Taylor expansion to get the approximate solution of the pricing problem, which put aside the 

relevant assumptions of Black-Scholes model.  

Since the Black-Scholes model was put forward, scholars from the whole world have put forward 

various options pricing models and methods, such as PDE method, analytic approximation method, binary tree 

method, finite difference method, Monte-Carlo simulation method, etc. It is quite surprising that in 2016, 

Zhang[3] studied the pricing of European option whose underlying asset diffusion process follows the general 

geometric Riemannian Brownian motion, obtained the corresponding semi-explicit solution. By choosing proper 

Riemannian metrics, he verified that the distribution of return rates of the stock has the character of 

leptokurtosis and fat-tail, and explained option pricing bias and implied volatility smile. 

In fact, besides time, there are many factors that affect the process of asset pricein the real world 

besides time, such as exchange rate, inflation, policy implementation, etc. these unknown factors could be 

regarded as a function  t of time. We consider the asset price function in the sense of   ttSS , . For 

convenience, we assume   tSS  . However  t is not necessarily linear with time t. The line space is 

"curved", we need to introduce the concept of manifolds. In this paper, we assume that the asse follows 

Riemannian Brownian motion and study the pricing of Asian option on Riemannian manifolds.  

 

II. PREPARATORY 

 

According to the need of studying Asian option pricing on Riemannian manifolds, this section 

introduces some necessary knowledge of stochastic differential geometry. For details, please refer to [2, 

Chapter2, Chapter3, 3, Chapter3]. 

Let M be a d-dimensional smooth differential manifold, bT M be the tangent space at b, TM be the 

tangent bundle,  MF be M's standard frame bundle, and   MMF : denote a projection map. If the 

vector field eut is parallel along tu for each
dRe , then the curve tu in  MF is horizontal,  0u is called 

the horizontal lift of the tangent vector    0


u . 

Let diRe d

i ,,2,1,  be the coordinate unit vectors. We define the vector fields diHi ,,2,1,  , 

by
 

  :uH i  
the

 
horizontal lift of uMTue ui   .

 

where  MFu .
 

Let tu be a horizontal lift of a differentiable curve tb on M. Since
tt bb T M , we have 

1 d

t tu b R  . The 

anti-development of the curve tb (or of the horizontal curve tu ) is a curve tw in 
dR defined by 
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1

0

t

t s sw u b ds  .                          (2.1) 

Hence the anti-development tw and the horizontal lift tu of a curve tb on M are connected by an ordinary 

differential equation on  MF : 

                                  
  i

ttit wuHu   .                          (2.2) 

Let be an affine connection defined on the tangent bundle TM. We consider the following SDE on the 

frame bundle  MF  in the sense of Stratonovish integral: 

                             
  i

t i t tdU H U dW ,
                        

(2.3) 

where W is an
dR -valued semimartingale. Stratonovich integral has the advantage of leading to ordinary chain 

rule formulas under a transformation, i.e. there are no second order terms in the Stratonovich analogue of the Itö 

transformation formula. This property makes the Stratonovich integral natural to use for example in connection 

with stochastic differential equations on manifolds. We now give some definitions. All processes are defined on 

a filtered probability space  *, , P F  and are *F -adapted. 

Definition 2.1 ([2, Definition 2.3.1]) (i)An   -F M valued semimartingale U is said to be horizontal if there 

exists an -dR valued semimartingale W such that (2.3) holds. The unique W is called the anti-development of U 

(or of its projection B U ). 

(ii) Let W be an -dR valued semimartingale and 0U be an   -F M valued, 0 -F measurable random 

variable. The solution of the SDE (2.3) is called a (stochastic) development of W in  F M . Its projection 

B U  is called a (stochastic) development of W in M. 

(iii) Let B be an M-valued semimartingale. An   -F M valued horizontal semimartingale U such that its 

projection =U B  is called a (stochastic) horizontal lift of B. 

Assume that M is a closed submanifold of 
dR and regard  B B as an -dR valued semimartingale. 

For each b M , let   : d

bP b R T M be the orthogonal projection from 
dR to the subspace

d

bT M R . 

Then intuitively we have the horizontal lift U of B is the solution of the following equation on F(M) 

                             
 *

t t tdU P U dB ,                         (2.4) 

where  uP*

 is the horizontal lift of  uP  . And the anti-development W of horizontal semimartingale U 

satisfies   

                            

 1

0

t

t s s sW U P B dB



  ,                       (2.5) 

where t tB U . 

Unlike the Euclidean Brownian motion, Brownian motion on a Riemannian manifold M is a diffusion 

process generated by 2/M , where M  is the Laplace-Beltrami operator on M. We assume that M is a 

Riemannian manifold equipped with the Levi-Civita connection , Given a probability measure  on M, there 
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is a unique 2/M -diffusion measure P on the filtered measurable space   *,BMW (the path space over M). 

Any 2/M -diffusion measure on  MW is called a Wiener measure on  MW . In general, an M-valued 

stochastic process B is a measurable map (random variable)  :B W M defined on some measurable 

space  , F . Rougly speaking, Brownian motion on M is any M-valued stochastic process B whose law is a 

Wiener measure on the path space  MW . 

Proposition2.2 ([2, Proposition 3.2.1]) Let  :B W M be a measurable map defined on a probability 

space  , , P F . Let
1

0P B   be its initial distribution. Then the following statements are equivalent. 

(i) B is a 2/M -diffusion process (a solution to the martingale problem for 2/M with respect to its own 

filtration *

BF ), i.e. 

         0
0

1
,0

2

def t
f

t M st
M B f B f B f B ds t e B       

is an *

BF -local martingale for all  MCf  . 

(ii) The law
1BP P B is a Wiener measure on  MW  i.e. 

BP P . 

(iii) B is a *

BF -semimartingale on M whose anti-development is a standard Euclidean Brownian motion. 

An M-valued process B satisfying any of the above conditions is called a (Riemannian) Brownian motion on M. 

Let M R be equipped with a general connection given by ee e   , where e is the usual unit vector 

on R:   ffe  , and  C R . We assume    RFybu  , ,  RCbt

 , and  ttt ybu ,  is a 

horizontal lift of tb  such that   10 b  and uu 0 . Hence 0 tb
y

t
 , i.e. 

  0 tttt ybby  .   

Since the orthogonal projection   RRTRbP b : is an identity, the horizontal lift of  uP  at u is 

         byybuP  ,10,0*  . 

Let B be a semimartingale. According to (2.4), the horizontal lift  ttt YBU ,  of B is determined by  

                           
    

   







yBYB

dBBYYBd ttttt

,,

,1,

000


.                     (2.6) 

Note that 

    tt

B

dBBdssd
t

0 . 

The following identity holds, 

                              
0

000

BBt

ss dssdssdBB
t

 .                 (2.7) 

Define 

   

x

dyyxG
0

,    

x

yG dyex
0

 . 
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From (2.6 ) and (2.7), we have 

  




  

t

sst dBByY
0

exp   

     0exp exp ty G B G B  . 

Hence, the horizontal lift which passes through  0 ,B y of B is given by 

   
 

If the anti-development tW of B satisfys 00 W , combined with (2.5), we have 

             
     1

0
0

exp exp
t

t s sW y G B G B dB   

                              
       1

0 0exp ty G B B B    .            (2.8)  

Theorem 2.3  Let M R be equipped with a Riemannian metric g. If B is a Riemannian Brownian 

motion and the horizontal lift U of B satisfies  yBU ,00  , then 

                    

 

 
 

 

 
0 2

0 2

1

4

t

t t

t t

g B g B
dB y dW y g B dt

g B g B


  .

             

 (2.9)

    

Proof: refer to [3] to give a simple proof as follows: 

There is a unique Levi-Civita connection compatible with metric g on Riemannian manifold  gR, . In 

local coordinates, the Christoffel sign of Levi-Civita connection induced by g is given by 

     
11

2

g
x g x x

x

 
 

  
   

1
ln

2
g x

x





, 

where   1
xg is the inverse matrix of  xg . 

We have 

 
 

 
ln

0

g x
G x

g
 ,  

 
 

0

1

0

x

x g s ds
g

   . 

Then through (2.8), we have 

    1

0expt tdW y G B d B   

             

 

 

 

 
01 exp ln

0 0

t

t

g B g B
y dB

g g


 
  
 
 

 

 

 
1

0

t

t

g B
y dB

g B

 . 

If B is a Riemannian Brownian motion, then 
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 

 
0

t t

t

g B
dB y dW

g B
  

                  

 

 
 

 
0

0

1 1

2
t t

t t

g B
y dW y g B d dW

g B g B

 
  
 
 

 

            

 

 
 

 

 
0 2

0 2

1

4

t

t

t t

g B g B
y dW y g B dt

g B g B


  . 

In particular, it is pointed out in reference [3] that if the initial value of the horizontal lift U is fixed and 

satisfies 

 
0 0

0

1
,U B

g B

 
 
 
 

, 

then 

                          
 

 

 
2

1 1

4

t

t t

tt

g B
dB dW dt

g Bg B


  .                  (2.10) 

If M is equipped with a Riemannian metric, we can define the anti-development, horizontal lift, etc. Based 

on this point of view, (2.10) is considered on  RO . Since   2

1


xg : (R,the usuall Euclidean 

metric)   xgRTx ,  is unitary. 

III. PRICING MODEL 

 

The purpose of this section is to establish the pricing equation of Asian option on Riemannian 

Manifolds (taking geometric average call option with fixed strike price as an example).  

Let B be a Riemannian Brownian motion on  ,R g , where 00 B . 
0ttF is a natural filtration generated 

by B, and   P
t

,,
0

 tFF, is a probability space. Let us consider a simple market. In this market, there are two 

assets,the stock S and the risk-free bond D, whose prices satisfy the following diffusion processes   

                                t t t tdS S dt S dB   ,                       (3.1) 

t tdD rD dt , 

where , and r are some constants.  

Combine with oIt  -Stratonovich integral conversion formula, we have 

                          

t

t
tt dS

S
BddtdB







 1

2
 .                   (3.2) 

From (2.10), we have  

                                
 

dt
Bg

Bd
t

t

1
 .                            (3.3) 
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Substitute (3.2), (2.10) into (3.1), we have 

                    
 

 
    t

tt

t

tt

t dW
Bg

dt
Bg

Bg

BgS

dS 
 













 


2

2

42
,             (3.4) 

where W is the anti-development of B, which is a standard Euclidean Brownian motion. 

Theorem 3.1  Define a process by 

0
:

t

t t uW W du   , 

where 

                     

 
 

 

 
2

1
:

2 4

t

u t

t t

g Br
g B

g B g B

 



 
    

 
 

.               (3.5) 

Let  

2

0 0

1
exp

2

t t

t u u uZ dW du
 

    
 
  . 

Assume
 

 2 2

0

T

uE u Z du  , then the probability measure P
~

given by 

    ,
A

P A Z dP A    F  

is a probability measure on  , T F , and the process tW is a standard Euclidean Brownian motion under P
~

. 

Proof: referring to [3], applying Girsanov theorem ([13, theorem 5.3.1]) and Novikov theorem (12, 

proposition 5.12), we can prove theorem 3.1. 

Suppose we have used the risk neutral measure to complete the conversion of the stock price process, put 

0
:

t

t t uW W du    

into (3.4), we have 

 

 

     

2

2
2 4

tt
t t

t t t t t

g BdS
dt dW

S g B g B g B g B

   

 
      
 
 

, 

Combining with (3.5), we have 

  t

tt

t Wd
Bg

rdt
S

dS ~
 , 

    t

tt

t Wd
Bg

dt
Bg

r
dB

~1

2





















. 

Let’s choose the risk-free bond D with one unit payoff as a numeraire. For any process Z, let us denote the 

numeraire-rebased process
1D Z

by
DZ . Then the price process can be recorded as

D

tS , i.e. 

D t
t

t

S
S

D
 , 
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then 

 
 

 

   

2

2
2 4

D
tt

tD

t t t t

g BdS
r dt dW

S g B g B g B

  

 

     
 
 

.              

Hence under P
~

, we have 

           
 

 

     

2

2
2 4

D
tt

t tD

t t t t t

g BdS
r dt dW

S g B g B g B g B

   

 
       
 
 

,      (3.6) 

 

D

t
tD

t t

dS
dW

S g B


 . 

Since tW
~

is a standard Euclidean Brownian motion under P
~

,
D

tS is a martingale under P
~

. 

From (3.6), we have 

   

2

0
0 0

1
exp

2

t t
D D

t u

uu

S S dW du
g Bg B

   
  

  
  , 

Noting that 

D

t tS S ,  0 0expDS rt S , 

the stock price under P
~

 is 

 
   

2

0
0 0

1
exp exp

2

t t

t u

uu

S rt S dW du
g Bg B

   
  

  
  . 

From (3.1), we have t

S

t FF  ,and  

1
t t

t

dB dt dS
S



 
   , 

where 0 , i.e.
S

tt FF  . Hence t

S

t FF  . However we can't assert that tV  is a function of time t and stock 

price tS by Markov property. Since TV is not a function of T and TS , it also relate to the path of S. 

In order to solve the expression of Asian option price on Riemannian manifold, we extend tS  and 

introduce the second process 









t

t dS
t

J
0
ln

1
exp  , 

the SDE of tJ  is  

                          

ln lnS J
dJ J dt

t

 
  

 
.                       (3.7)    
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Since  tt JS , obey (3.1) and (3.7), they form a two-dimensional Markov process [13,Corollary 6.3.2], the 

payoff TV  is a function of T and the terminal value  TT JS , . 

In fact, by 

 T TV J K


  , 

TV only depends on T and TJ . Therefore, there must be a function  yxtV ,,  so that the price of Asian option 

can be expressed as 

   
 

 exp
T

u T tt
E r du V   

F .                (3.8) 

Theorem 3.2  The price function  , ,t tV t S J of Asian option on Riemannian manifolds in (3.8) satisfies 

the folloing PDE: 

 

2 2 2

2

0

ln ln 1
0

12
ln ln

V V S J S V V
J rS rV

t J t S S
g S S t






    
    

    
  

 

, 

and boundary condition 

   , ,V S J T J K


  . 

Proof: Suppose 0t  for each  Tt ,0 . Let V=V(S,J,t) be a replicable Asian option with the maturity T 

and form a portfolio 

 , , tV S J t S   . 

According to the method of complete hedging, this portfolio is risk-free. Hence its yield is risk-free yield, i.e. 

 td r dt r V S dt     . 

From Itö formula, we have 

td dV dS    

 

2
2

2

1

2
t

V V V V
dt dS dJ dS dS

t S J S

   
    
   

 

                   
 

2 2 2

2

1

2
t

t

V S V V dJ V
dt dS

t g B S J dt S

     
             

.          (3.9) 

In order to make  risk-free within  dttt , , take 

t

V

S


 


. 

Substituting (3.9) and deleting dt, we have 
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 
0

lnln
12

1
2

2

0

22






























rV

S

V
rS

S

V

tSSg

S

dt

dJ

J

V

t

V





,       (3.10) 

where








t

t dS
t

J
0
ln

1
exp  . 

Hence the pricing model of Asian option on Riemannian manifolds is 

    

 

   














































KJTJSV

rV
S

V
rS

S

V

tSSg

S

t

JS

J

V
J

t

V

,,

0

lnln
12

1lnln
2

2

0

22






.  (3.11) 

IV. MODEL SOLUTION 
 

In this section, we will deal with the Asian option pricing model (3.11) obtained in section 3 by a series 

of mathematical methods. 

For  

 

2 2 2

2

0

ln ln 1
0

12
ln ln

V V S J S V V
J rS rV

t J t S S
g S S t






    
    

    
  

 

, 

let
 

                     

 
T

StTJt




lnln 
 ,    tUtJSV ,,,  ,                 (4.1)

 

we have 

























T

S

T

JU

t

U

t

V



lnln
, 

TJ

tU

J

V









,  






 U

TS

tT

S

V
, 

 














 




 U

TS

tTU

TS

tT

S

V
22

22

2

2

. 

Substituting the above results into (3.9), we have 

   

2 2

2

1
0

2 2

U T t U r T t U
rU

t g T g T



    

        
               

,

 

where  
0

t T
s ds t

T s


 


 

 .

 And the boundary condition 

   





 KeKJVU

TtTtTt


.

 Under (4.1), the Asian option pricing problem (3.11) is transformed into the following problem 
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   

 

2 2

2

1
0

2 2

t T

U T t U r T t U
rU

t g T g T

U e K



    





         
                 


 

,        (4.2) 

where  
0

t T
s ds t

T s


 


 

 . 

Next, let 

                        
 tUeW  ,  t  ,  t  .                    (4.3)

 

It's not hard to have 

        





















  Wt
W

t
W

te
t

U t 







, 

 












  W
e

U t

,
 

2

2

2

2












  W
e

U t

. 

Substituting the above results into (4.2), we have 

 
   

    
2 2

2

1
0

2 2

W T t W r T t W
t t r t W

g T g T


  

     

         
                      

. 

(4.4)

 Let  

  0 tr  ,   






 


T

tTr
t


 ,  

2








 


T

tT
t ,

 

and the terminal conditions 

      0 TTT  .
 

We have 

   tTrt  ,    2
2

tT
T

r
t 


 ,    3

23

1
tT

T
t  .

 

Substituting the above values into (4.4) , the problem (4.2) is transformed into

 

                 

   

   

2

2 3 2

1
0

2 2 3

,0

W W T W

g g T

W e K



    




    
        


 

.             (4.5)

 

where    t,,   . 

For general Riemannian metric g, it is not easy to obtain a explicit solution of (4.5). We here provide a 

semi-explicit expression for the solution by using the fundamental solution technique. 

For  
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                      

2

2 3 2

1

2 2 3

W W T W

g g T



    

   
   

   
,              (4.6)     

let   ,  satisfy the equation 

 
     

2

2

1
,

2g

 
      

 

 
  

 
, 

where    , ,y     ,    is a Dirac- function. 

By using the generalized Fourier transform to find , we assume that   , is a tempered distribution 

with respect to  [20], then 

 
 

   









  










 de
g

de ii ,
2

1
,

2

2

 , 

i.e. 

 
 

2ˆ 1
ˆ

2g


   

 


 


. 

From the formula of the basic solution of the constant coefficients differential equation, we have 

      
21

2
ˆ

g
e H C

 


  


  . 

where  H is a Heaviside function. 

Since   is a tempered distribution,   0C , and 

   
21

2
ˆ

g
H e

 


 


 . 

Hence  

   
    









 dee

H
de gii






2

2

1

2
,ˆ

2

1
,



. 

Using the Fourier transformation formula of Gauss function, we have 

 
    












dee
H g

i

2

1

2
,

2

4

1

2
















 (substitution





2
 ) 

 

 
    

 
2

22

1

2

1

2

1
22

2

1

2













 g

eg
H 

  

 
   









 2

2

2


g

e
g

H


 . 

Hence  
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     













 

.0,
2

,0,0

,
2

2

te
g

t

g










 

Since the heat-conduction equation is an irreversible process, we only consider the Cauchy problem of 0t . 

Let  , ; ,Z y    be the fundamental solution of the equation 

 

2

2

1

2g

 

 

 


 
,

 

i.e. 

 
 
 

  

 

2

, ; , exp
2 2

g g
Z y

   
   

    

 
   

  
 

. 

Define  

 
   

 
2

2 3 2

1
, ; , , ; ,

2 2 3

T
K Z

g g T


        

    

    
     

     

, 

   
1

, ; , , ; ,m

m

K       




  ,

 

where KK 1 ,        1 1, ; , , ; , , ; , 2m m
R

K d K y K y dy m



             ， . 

The fundamental solution of Equation (4.6) is 

       , ; , , ; , , ; , , ; ,
R

x d x y y y dy



                      . 

Hence the solution of Cauchy problem (4.5) is 

     , , ; ,0
R

W e K d     


    . 

Return to the original variables, the semi-explicit solution of the equation (3.11) can be obtained as follows 

 
       

3 3 2

2 2

ln ln
, , exp , ;0,

3 3 2R

T t T t t J T t S r T t
V S J t r T

T T T T


 

        
        

    
    

  

 e K d 


  . 

 

V. SUMMARY 

 

The main work of this paper is to do further research on the basis of predecessors. This paper mainly 

studies the pricing model of Asian option on Riemannian manifold, and gives a semi-explicit solution to the 

pricing formula of geometric average Asian call option with fixed strike price.  

With the development of market economy, there are many kinds of options, such as lookback options, 

knock-out options and so on. In order to be closer to the real financial market, we can consider the research of 

all kinds of option pricing problems under the non-risk neutral measurement , and the research of all kinds of 

option pricing problems under the incomplete hedging market in the future research of option pricing. 



Asian option on Riemannian manifolds                                                             

International Journal of Business Marketing and Management (IJBMM) Page 80 
 

REFERENCES 
 

[1]  Bernt Øksendal. Stochastic Differential Equations[M]. Springer. 2006. 

[2]  Elton P. Hsu. Stochastic Analysis On Manifolds[M]. American Mathematical Society. Providence, RI, 

2002. 

[3]  Yong-Chao Zhang. Option Pricing Under General Geometric Riemannian Brownian Motions[J]. Bull, 

Korean Math. Soc. 53(2016). No. 5:1411-1425. 

[4]  J.Hull , A.White. The Pricing of Options on Assets with Stochastic Volatility[J]. J. Finance. 42(1987). 

No.2, 281-300. 

[5]  A.Friedman. Stochastic Differential Equations and Applications[M]. Academic Press. 1976.   

[6]  A.Friedman. Partial Differential Equations of Parabolic Type[M]. Prentice-Hall. 1964. 288-322. 

[7]  F. Black & M. Scholes. The Pricing of Options and Corporate Liabilities[J]. Journal of Political 

Economy, 1973, 81(3):637-654. 

[8] P.J.Hunt, J.E.Kennendy. Financial Derivatives in Theory and Practice[M]. Revised ed. John Wiley & 

Sons, Ltd. 2004. 

[9]  S.E.Shreve. Stochastic Calculus for Finance[M]. Springer-Verlag. New York Inc. 2004. 

[10]  I. Karatzas, S.E.Shreve. Browwnian Motion and Stochastic Calculus[M], 2 ed. Springer-Verlag. New 

York. 1991.  

[11]  Chan T. Pricing contingent claims on stocks driven by Lévy processes[J]. The Annals of Applied 

Probability, 1999, 9(2):504-528. 

[12]  H.X. Wu, C.L. Shen & Y.L. Yu. Preliminary study of Riemann geometry[M]. Beijing: Higher 

Education Press, 2014. 

[13]  H.W. Zou. Principle of asset pricing[M]. Economic Science Press, 2010. 

[14]  Stein E M, Stein J C. Stock Price Distributions with Stochastic Volatility: An Analytic Approach[J].  

 Review of Financial Studies, 1991, 4(4):727-752. 

[15]  X. Lai & Q.C. Feng. Summary of Asian option pricing research[J]. Modern Business Industry,  

 2009,21(24):170-172. 

[16]  Chalasani P, Jha S, Varikooty A. Accurate Approximations for European-Style Asian Options[J]. 

Journal of Computational Finance, 1998, 1(4):11-30. 

[17]  D.Z. Guo. Mathematical Finance: the principle and model of asset pricing [M]. Tsinghua University 

Press, 2006. 

[18]  Merton R C. Option pricing when underlying stock returns are discontinuous[J]. Working papers, 1975,  

 3(1):125-144. 

[19]  Zhang J E. A Semi-Analytical Method for Pricing and Hedging Continuously Sampled Arithmetic 

Average Rate Options[J]. Journal of Computational Finance, 2001, 5(1):59-79. 

[20]  Reed M, Simon B. Methods of modern mathematical physics[M]. World Book Publishing Company. 

2003. 

[21]  L.S. Jiang. Mathematical modeling and methods of option pricing[M]. Beijing:Higher Education Press, 

  2008. 

[22]  Z.Z. Tang. Fundamentals of Riemann geometry[M]. Beijing:Beijing Normal University Press, 2011. 

[23]  Edmond Lévy. Pricing European average rate currency options[M]. Journal of International Money and  

 Finance. 1992,10:261-287. 

[24]  Stein E M, Stein J C. Stock Price Distributions with Stochastic Volatility: An Analytic Approach[J]. 

Review of Financial Studies, 1991, 4(4):727-752. 

[25]  Nengjiu Ju. Pricing Asian and Basker Options via Taylor Expansion[J]. The Journal of Computationl 

Finance. 2002,5(3):79-103. 

[26]  Kemna, A. G. Z, Vorst, A. C. F. A pricing method for options based on average asset values[J]. Journal 

of Banking & Finance, 1990, 14(1):113-129. 


