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Abstract: Gross Domestic Product (GDP) has become the single best indicator of economic growth and 

represents the total worth of all goods and services produced within a country's boundaries in a specific year. 

On the other hand, GDP per capita, is mostly related to the living standard through time. In this work, we focus 

on the Greek GDP for the period 1971-2020, and we using the Box-Jenkins approach (BJ) to build an 

Autoregressive-Integrated Moving-Average (ARIMA) model. GDP data was collected in annual form from the 

World Bank with values in constant USD2015. The results indicate that the ARIMA(1,2,1) is the most 

appropriate model, given model selection criteria. The work aims to contribute at the limited literature related 

to the Greek GDP and ARIMA, and show some direction for future research.  
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I. INTRODUCTION 
Modern economic environment is characterized by increasing competition, constant change and 

continuous volatility at local and global scale, with technology developments playing a key role in this [1]. All 

modern societies set at the forefront of their interest the macroeconomic indicators, which affect lives and 

welfare of all economic units, including economic recession, inflation, unemployment, budget deficits, changes 

in interest rates and exchange rates among others. The evolution of macroeconomic variables is an important 

indicator of countries’ economic well-being. So, their study is considered a necessity, for countries to anticipate 

economic changes and take appropriate measures critical moments. Forecasting thus has gained significant 

importance, as it allows for estimation of future trends in the short or medium term [2].  

Among other macroeconomic indicators, the most widely used measure for an economy’s size is GPD 

(Gross Domestic Product). Some economists consider it as a major invention of the 20th century [3]. Samuelson 

& Nordhaus [3], support that GDP can provide the overall picture of economy, similar to a satellite in the outer 

space, which can study the weather across a whole continent. So, as an indicator, it enables policymakers to 

examine the growth level of an economy (whether it is contracting or expanding), undertake appropriate 

measures, if required, and foresee any recession or inflation periods. GDP forecasting is thus of significant 

importance for policy makers and central banks.  

Forecasting methods for macroeconomic indicators, like GDP, rely mainly on statistical methods and 

have been developed extensively during the past years, with the assistance of computing developments. Lately, 

machine learning is also considered as a promising approach which provides a data driven option, contrasted to 

the theory driven approach of the statistics and econometrics. In this context, this work focuses on GDP 

forecasting and mainly in ARIMA modelling. The aim of this work is to obtain an appropriate ARIMA model 

for the Greek GDP following the Box-Jenkins methodology for the period 1971-2020, and contribute to the 

limited literature in the domain.  

The structure of the paper is as follows: Initially, a literature review in forecasting and GDP is 

presented and next a background in theoretical notions and terms. Next, the methodology is presented, along 

with the results and finally, the conclusion with some discussion. 
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II. LITERATURE REVIEW 
The forecasting research domain is very active and rich in methods and theories in an effort to capture 

the complexity and reduce uncertainty [4]. In general, we can distinguish forecasting methods in literature, in 

two major approaches [5]. The ones based on parametric modeling, and the ones based on non-parametric 

methods. Some well-known parametric methods comprise the linear Autoregressive models [6] and the non-

linear and Markov switching models [7]. In the non-parametric ones, we can find kernel methods, neural 

network methods, nearest neighbor method, wavelet methods among others [8]. The parametric models received 

substantial attention in economic forecasting, as they include substantial theoretical development in parameter 

modelling robustness and consistency, as well as their asymptotic properties. The non-parametric models, do not 

specify the model and residuals distribution beforehand, and they use the data to direct model specification. As 

such, they overcome problems that we find in the parametric models, like the strong hypotheses of model 

specification, or the estimation of parameters and their asymptotic properties. So, non-parametric modelling can 

be considered as more objective approach, as researcher lets data drive the model specification. One 

disadvantage, however, of non- parametric methods is increased mathematical complexity, something that can 

be adequately handled, however, by novel algorithms and increasing computing capacity [9]. However, both 

approaches are followed in research and the domain is very active, due to the significance of forecasting in 

economic decision making. Lately, machine learning methods are gaining importance and are also highly 

considered for forecasting, on top of the traditional ones.  

For time series forecasting, a well known methodology, which is applied by researchers, is the Auto 

Regressive Integrated Moving Average, or ARIMA, that was introduced by Box and Jenkins [6]. It is based on 

the Wold representation theorem, which states that any stationary process can be expressed as a sum of two 

components: a stochastic component: a linear combination of lags of a white noise process and a deterministic 

component, uncorrelated with the latter stochastic component. This theorem implies that any stationary process 

can be written as a linear combination of a lagged values of a white noise process (MA(∞) representation) or has 

an infinite moving average (MA) representation, so its evolution can be expressed as a function of its past 

developments [10].  

Among other macroeconomic indicators, GDP plays an important role in economic analysis, as it 

reflects and summarizes economic growth. Works that focus on GDP forecasting employ a variety of methods 

either parametric and non-parametric ones. A review of the works in literature, reveals that the approaches are 

mixed, but the linear autoregressive models play a substantial role. GDP forecasting has been studied from the 

early developments of linear autoregressive models [6]. Some early works, include the works of Sims and 

Litterman [11], [12]. Sims, proposes a linear VAR model for American GDP forecasting, while Litterman 

extends into Bayesian VAR model. Work originating from Engle and Granger with cointegration between GDP 

and M2 [13], is also applied in newer study from Gupta for GDP forecast in South Africa [14]. Some non-linear 

models are also introduced and approaches which combine linearity [15]; [16] and aggregation [17]. Subsequent 

works include factor models with a great number of indicators [18] and dynamic extensions [19], [20], [21]. 

There exist also some alternative models based on microeconomic foundation and stochastic equilibrium, from 

[22]. However, the ARIMA and VAR linear univariate models, still remain the benchmark models in the 

domain. Compared to parametric models, the application of non-parametric models was limited to economic 

forecasting in literature [23]. Some works include use of neural networks to forecast Canadian GDP [24], or 

nearest neighbors, and radial basis function methods for euro area GDP forecast [25], [26]. However, we see 

some expansion in recent literature on those methods mainly to theoretical developments, which reduce the 

restrictions that techniques, line kernel method, have for confidence intervals estimation and robustness.  

Some indicative recent works which focus on specific countries’ GDP forecasting are the following: 

Stundziene uses a regression model for Lithuanian GDP forecast and compares time series to regression 

approaches [27], [28]. Hassana, and Mirzab aply an ARIMA model for Indian GDP [29]. Likewise, Hang and 

Dun forecast Vietnam’s GDP using ARIMA model [30] and Nwokike and Okereke for Nigerian GDP [31]. 

ARIMA is also used by Dritsaki and Dritsaki for Greek GDP [32], while Gawthorpe applies a random forest 

model for Posilh GDP [33]. 

From this limited review, it is evident that the domain is very rich in methods and applications and 

developments along with computing capacity have lead to more complex models. However, a further systematic 
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review of the domain is required in order to evaluate the approaches in terms of validity and forecasting 

efficiency. Also, there is limited work on countries that exhibit the characteristics of economies like Greek one, 

in terms of GDP volume, and on the other hand with recession periods originating from the global 2007 

subprime crisis.  

 

III. METHODOLOGY AND EMPIRICAL RESULTS 
Following the research in the domain, we apply time series analysis in this work for Greek GDP. The 

methodology we use is the ARIMA (Auto-Regressive-Integrated-Moving-Average) approach, developed by 

Box and Jenkins [6]. The purpose of the work is to explore which ARIMA model fits best in the Greek GDP for 

the period 1971-2020, on annual basis, validate the fit, and examine its predictive power. In addition, to offer 

insights for modeling GDP of countries which share common characteristics with Greek economy. The 

methodology we followed is based on the Box-Jenkins methodology and is presented in the next.  

 

3.1 Data collection 

In this phase we collected data for Greek GDP and adapted the dataset. We used GDP data from the 

WorldBank database in constant USD2015 values for the period 1971-2020. The line plot below (Fig. 1) depicts 

the evolution of GDP through this period (in USD millions). It is obvious that there is an increasing trend until 

2005, and a decreasing trend after, showing that GDP series is a non-stationary process.  

 

 
Figure 1: Greek GDP in constant millions USD2015 (1971-2020) 

 

3.2 Identification of stationarity of time series 

The stationarity of time series is pre-requisite in order to apply the method. We examine the stationarity 

using the autocorrelation function (ACF), partial autocorrelation function (PACF) as well as the ADF 

(Augmented Dickey-Fuller) test.  

The correlogram of the Greek GDP series with a pattern up to 24 lags in level (Fig. 2), shows that the 

coefficients of autocorrelation (ACF) begin with a high value and decline slowly indicating a non-stationary 

series. Also, the Ljung-Box Q-statistic has a probability less than 0.5, so we cannot reject the null hypothesis 

that the GDP series is non-stationary. So, we take the first difference and examine for stationarity.  
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Figure 2: Correlogram of Greek GDP series (Level) 

 

The correlogram of the first difference (Fig. 3), shows that the coefficients of autocorrelation (ACF) 

begin with a high value and decline after the second lag. Also, the Ljung-Box Q-statistic has a probability less 

than 0.5, so we cannot reject the null hypothesis that the GDP series is non-stationary. So, we take the second 

difference and examine for stationarity again.  

 

 
Figure 3: Correlogram of Greek GDP series (first difference) 

 

In the correlogram of the second difference (Fig. 4), we see that Ljung-Box Q-statistic has a probability 

larger than 0.5, so we reject the null hypothesis that the GDP series is non-stationary.  

 

Date: 08/10/22   Time: 18:47

Sample: 1971 2021

Included observations: 50

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.949 0.949 47.767 0.000

2 0.885 -0.154 90.181 0.000

3 0.816 -0.068 127.03 0.000

4 0.731 -0.201 157.22 0.000

5 0.648 0.015 181.49 0.000

6 0.573 0.028 200.88 0.000

7 0.501 -0.001 216.08 0.000

8 0.440 0.039 228.09 0.000

9 0.386 -0.025 237.52 0.000

10 0.330 -0.073 244.58 0.000

11 0.270 -0.104 249.45 0.000

12 0.208 -0.067 252.42 0.000

13 0.144 -0.046 253.88 0.000

14 0.085 0.022 254.40 0.000

15 0.035 0.053 254.49 0.000

16 -0.013 -0.045 254.50 0.000

17 -0.063 -0.116 254.81 0.000

18 -0.105 -0.012 255.72 0.000

19 -0.143 -0.022 257.43 0.000

20 -0.182 -0.042 260.30 0.000

21 -0.214 0.016 264.41 0.000

22 -0.244 -0.024 269.94 0.000

23 -0.276 -0.065 277.25 0.000

24 -0.303 -0.045 286.44 0.000

Sample: 1971 2021

Included observations: 49

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.548 0.548 15.615 0.000

2 0.336 0.051 21.609 0.000

3 0.252 0.071 25.061 0.000

4 0.065 -0.157 25.295 0.000

5 -0.058 -0.090 25.483 0.000

6 -0.054 0.032 25.651 0.000

7 -0.103 -0.054 26.276 0.000

8 -0.109 -0.005 27.000 0.001

9 -0.025 0.071 27.039 0.001

10 -0.073 -0.102 27.385 0.002

11 -0.075 -0.011 27.755 0.004

12 -0.084 -0.078 28.237 0.005

13 -0.141 -0.080 29.614 0.005

14 -0.248 -0.176 33.996 0.002

15 -0.088 0.197 34.563 0.003

16 -0.082 -0.055 35.076 0.004

17 -0.107 -0.043 35.971 0.005

18 -0.001 0.033 35.971 0.007

19 -0.004 -0.059 35.972 0.011

20 -0.091 -0.126 36.690 0.013
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Figure 4: Correlogram of Greek GDP series (second difference) 

 

The results of the Augmented Dickey-Fuller (ADF) test and Phillips-Perron test on the level, first and 

second differences are also depicted in Table 1. Results indicate that the GDP is stationary in the second 

differences. So, our ARIMA(p, d, q) model will have the value d=2, or it will be integrated of order two, I(2).  

 

Table 1: ADF and PP test on level, first and second differences of GDP 

 Level First differences Second differences 

 t statistic 5% level t statistic 5% level t statistic 5% level 

ADF -1.632463 -2.923780 -2.895410 -2.923780 -6.949054 -2.925169** 

PP -1.827559 -2.922449 -2.912292 -2.923780 -6.919983 -2.925169** 

*MacKinnon (1996) one-sided p-values. 

**denote statistically significant at 5% significance levels. 

 

3.3 Model identification  

ARIMA model requires the identification of the three parameters p, d and q, where p is the order of 

auto regressive terms , d is the order of integration or number of differences and q is number of moving average 

terms. From the previous step, we defined the value of d=2. For the identification of the ARMA(p, q),  p and q 

parameters, we used the ACF and PACF plots for tentative values and next used the Akaike information 

criterion (AIC) for the selection of the optimum model. In order to select the appropriate values, we perform a 

comparison of tentative models, within the range of the values we calculate from the critical value 

±2/√n=±2/√50=±0.282. From the values of the ACF and PACF on Fig. 2, we define the value of q between 0 

and 10 and the value of p between 0 and 2. So, we create a comparison table for the combination of all the 

models in this range (Table 2). From the results, we can conclude that the most suitable ARMA model is the 

ARMA(1, 1). Given that the model is stationary on second differences (d=2), the ARIMA model will be 

ARIMA(1, 2, 1).  

Table 2: Comparison of models using AIC, BIC and HQ 

Sample: 1971 2021

Included observations: 48

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 -0.122 -0.122 0.7633 0.382

2 -0.108 -0.125 1.3709 0.504

3 0.069 0.040 1.6250 0.654

4 -0.123 -0.126 2.4470 0.654

5 -0.150 -0.178 3.7044 0.593

6 0.057 -0.021 3.8903 0.692

7 -0.096 -0.129 4.4287 0.729

8 -0.206 -0.265 6.9843 0.538

9 0.102 -0.057 7.6208 0.573

10 0.024 -0.065 7.6572 0.662

11 0.029 -0.006 7.7108 0.739

12 0.139 0.040 8.9939 0.703

13 0.149 0.143 10.518 0.651

14 -0.300 -0.270 16.869 0.263

15 0.112 0.023 17.783 0.274

16 0.095 0.058 18.459 0.298

17 -0.168 -0.062 20.636 0.243

18 0.130 0.122 21.986 0.233

19 0.094 0.133 22.719 0.250

20 -0.149 0.014 24.634 0.216



GDP Modeling Using Autoregressive Integrated Moving Average (ARIMA): A Case for... 

International Journal of Business Marketing and Management (IJBMM) Page 71 

 
 

3.4 Model estimation  

Next, we estimate the above ARIMA(1, 2, 1) model and the results are depicted in Table 3. The results 

show that both coefficients are significant at 1% level of significance. The iterative process used by EViews 

converged after 32 iterations. The roots are 0.64 and 0.94, both inside the unit circle, indicating stationarity and 

invertibility respectively. Also, the residual plot in Fig. 5, shows the fitted, actual and residuals of the selected 

model ARIMA(1, 2, 1).  

 

Table 3: Comparison of models using AIC, BIC and HQ 

Dependent Variable: D(GDPGRCM,2)  

Method: ARMA Maximum Likelihood (OPG - BHHH)  

Sample: 1973 2020   

Included observations: 48   

Convergence achieved after 32 iterations  

Coefficient covariance computed using outer product of gradients 
     

     
Variable Coefficient Std. Error t-Statistic Prob.   

     

     
AR(1) 0.637188 0.156030 4.083750 0.0002 

MA(1) -0.936530 0.151644 -6.175851 0.0000 

SIGMASQ 41068898 6704390. 6.125673 0.0000 
     

     
R-squared 0.107718     Mean dependent var -597.9036 

Adjusted R-squared 0.068061     S.D. dependent var 6856.099 

S.E. of regression 6618.672     Akaike info criterion 20.51030 

Sum squared resid 1.97E+09     Schwarz criterion 20.62725 

Log likelihood -489.2472     Hannan-Quinn criter. 20.55450 

Durbin-Watson stat 1.750587    
     

     
Inverted AR Roots       .64   

Inverted MA Roots       .94   
     
     

 

Model Selection Criteria Table

Dependent Variable: DDGDPGRCM

Date: 08/10/22   Time: 20:27

Sample: 1971 2021

Included observations: 48

Model LogL AIC* BIC HQ

(1,1)(0,0) -488.108242  20.504510  20.660443  20.563438

(1,2)(0,0) -488.078997  20.544958  20.739875  20.618618

(2,1)(0,0) -488.080943  20.545039  20.739956  20.618699

(0,4)(0,0) -487.416502  20.559021  20.792921  20.647412

(0,0)(0,0) -491.582674  20.565945  20.643911  20.595408

(2,2)(0,0) -487.583461  20.565978  20.799878  20.654369

(0,2)(0,0) -489.868951  20.577873  20.733806  20.636800

(0,1)(0,0) -490.954626  20.581443  20.698393  20.625638

(0,3)(0,0) -489.053746  20.585573  20.780490  20.659232

(1,3)(0,0) -488.063608  20.585984  20.819884  20.674375

(1,0)(0,0) -491.135084  20.588962  20.705912  20.633157

(0,5)(0,0) -487.274508  20.594771  20.867655  20.697894

(1,4)(0,0) -487.329377  20.597057  20.869941  20.700180

(0,6)(0,0) -486.432968  20.601374  20.913241  20.719229

(2,0)(0,0) -490.543203  20.605967  20.761900  20.664894

(2,3)(0,0) -487.583075  20.607628  20.880512  20.710751

(1,5)(0,0) -486.697797  20.612408  20.924275  20.730263

(0,9)(0,0) -483.751678  20.614653  21.043470  20.776704

(2,5)(0,0) -485.889228  20.620384  20.971235  20.752971

(2,4)(0,0) -487.032596  20.626358  20.938225  20.744213

(2,6)(0,0) -485.068605  20.627859  21.017692  20.775177

(0,7)(0,0) -486.144814  20.631034  20.981884  20.763621

(1,6)(0,0) -486.244982  20.635208  20.986058  20.767794

(2,7)(0,0) -484.306827  20.637784  21.066601  20.799835

(2,8)(0,0) -483.434692  20.643112  21.110912  20.819895

(1,9)(0,0) -483.523841  20.646827  21.114627  20.823609

(0,8)(0,0) -486.144620  20.672693  21.062526  20.820011

(1,7)(0,0) -486.145426  20.672726  21.062560  20.820045

(2,9)(0,0) -483.516876  20.688203  21.194987  20.879717

(1,8)(0,0) -485.654814  20.693951  21.122767  20.856001

(0,10)(0,0) -484.823562  20.700982  21.168782  20.877764

(1,10)(0,0) -484.815069  20.742295  21.249078  20.933809

(2,10)(0,0) -491.722525  21.071772  21.617539  21.278018
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Figure 5: Residual plot of the ARIMA(1, 2, 1) 

 

3.5 Diagnostic checking 

The diagnostic checking of the model allows us to check the goodness of fit of the model. In general, 

we examine the plot of  the residuals and look for outliers, autocorrelation or periods where the model does not 

fit well. From the results of Fig. 6, we note that the autocorrelation coefficients and the partial autocorrelation 

coefficients are not statistical significant in all lags. So, we can conclude that the residuals are not 

autocorrelated. From the diagnostics, we can conclude that the ARIMA(1, 2, 1) can be considered as an 

appropriate model.  

 
Figure 6: Correlogram of residuals 

 

3.6 Forecasting and forecast evaluation  

After the selection of the ARIMA(1, 2, 1) model, we depict the actual and forecasted values, as well as 

the statistical values of the forecasting (Fig. 7, 8, 9). The accuracy of forecasting is checked by root mean 

squared error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE) and the inequality 

coefficient of Theil (U). From the results, we can see that for the period later than 2010, the dynamic and static 

forecasts perform well. The MAPE is relatively low for both and the U-Theil inequality index has a value close 

to zero.  
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2 -0.034 -0.034 0.0625
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10 0.041 0.025 5.6031 0.692
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12 0.113 0.047 6.5930 0.763
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14 -0.286 -0.285 13.044 0.366

15 0.085 0.076 13.573 0.405

16 0.050 0.055 13.760 0.468

17 -0.166 -0.071 15.883 0.390

18 0.095 0.086 16.612 0.411

19 0.064 0.042 16.953 0.458

20 -0.144 -0.108 18.734 0.408
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Figure 7: Dynamic forecast of GDP for 2017-2021 

 

 
Figure 8: Static forecast of GDP for 2010-2021 

 

 
Figure 9: Residual plot of the ARIMA(1, 2, 1) 

 

IV. CONCLUSION 
The aim of this work was to model the Greek GDP and examine its forecasting capability, applying the 

BoxJenkins approach, based on annual data from 1971 to 2020. The four stages of Box-Jenkins approach were 

conducted in order to select an appropriate ARIMA model, and time series and the correlogram plots were used 

for testing the stationarity of the data. Using the different goodness-of-fit measures (AIC, and BIC), the various 

ARIMA models with different order of autoregressive and moving-average terms were compared to find the 

appropriate ARIMA (p, d, q) process. Finally, an ARIMA (1, 2, 1) model was selected and estimated. The 

results from static and dynamic forecasting show that they model provides some realistic and accurate values for 
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the period after 2010. Despite the inherent limitations of forecasting, form this work it looks that the ARIMA 

model is adequate for GDP modeling and forecasting. 
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