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Abstract:In this paper, we focus on a financial market with one riskless and one risky asset, and consider the 

asset allocation problem in the form of semi-variable transaction costs. One of the basic ideas of this paper is to 

transform the problem of maximizing the expected utility of terminal wealth in a friction market with semi-

variable transaction costs into a frictionless market which can produce the same maximum utility, and then give 

the analytical formula for the original problem. Generally, the price process of risky assets in such frictionless 

market is called "shadow price", and the corresponding problem after conversion is called "shadow problem". 
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I. Introduction 
In the field of financial mathematics, asset allocation is a very hot and difficult problem. Generally speaking, 

investors invest their money in different types of assets in financial market in order to maximize the expected 

utility of their wealth at some point in the future. This kind of problem is usually regarded as the utility 

maximization problem with constraints. 

A complete financial market is a kind of very ideal investment environment, where any assets in this 

market can be bought and sold without transaction costs. In a complete financial market, no arbitrage is 

equivalent to the existence of a unique equivalent martingale measure Q, such that the security price under this 

measure is a martingale, and this property can be used to price a contingent claim. At the same time, all assets 

can be replicated with the underlying assets. However, the assumption of the complete financial market is not 

consistent with the real investment environment faced by investors. Therefore, it is of more practical 

significance to consider the optimization of the portfolio in the case of incomplete market. 

Investment in incomplete market is faced with transaction costs. Specifically, investors buy and sell assets 

in different prices. The ask price is higher, while the bid price is lower because of transaction costs. Due to the 

existence of transaction costs, investors have to balance between transaction profits and payments. 

The research on incomplete financial market still started from the research on complete market. By 

applying convex analysis and martingale properties, Pliska[1] solved the problem of maximizing the expected 

utility of wealth at a terminal planning horizon by selecting portfolio of securities. Karatzas et al.[2] studied that 

when the number of stocks is less than the dimension of multi-dimensional Brownian motion, the incomplete 

market can be transformed into a complete market by introducing "virtual" stocks, and they proved that the 

optimal portfolio obtained in this method is consistent with that in the original incomplete market. Kramkov and 

Schachermayer[3] studied the problem of maximizing the expected utility of terminal wealth in the framework 

of a general incomplete semi-martingale model of a financial market. They showed that the necessary and 

sufficient condition on a utility function for the validity of the theory to hold true is that asymptotic elasticity of 

the utility function should be strictly less than 1. 

Liu and Loewenstein[4] studied the optimal trading strategy for a CRRA investor who wants to maximize 

the expected utility of wealth on a finite date when facing transaction costs. They showed that even small 

transaction costs can have large impact on the optimal portfolio. Hence, an interesting question is that if this 

impact can be replaced in a frictionless market which yields the same optimal strategy and utility. If so, this 

frictionless market is called “shadow market”. The concept of such shadow market was first proposed by 

Cvitanić and Karatzas[5]. In their pioneering work, they found that if a dual problem was solved by a suitable 

solution, then the optimal portfolio is the one that hedges the inverse of marginal utility evaluated at the shadow 
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price density solving the corresponding dual problem. Later, Kallsen and Muhle-Karbe[6] found that shadow 

price always exists in finite space. Benedettiet al.[7] showed that if short selling is not allowed in the financial 

market, then shadow price can always exist. As for càdlàg security price process S, Czichowsky and 

Schachermayer[8] proved that shadow price can be defined by means of a “sandwiched” process which consists 

of a predictable and an optional strong super-martingale. This conclusion was then extended by Bayraktar and 

Yu[9] to a similar problem with random endowment. 

Instead of constructing the shadow price from dual problem, Loewenstein[10] assumed that short sales 

was not allowed and investor faced transactions costs, then he proved that shadow price can be constructed from 

the derivatives of dynamic primal value functions. This result was then extended by Benedetti and Campi[7] to a 

similar problem with Kabanov’s muti-currency model. 

In addition, shadow price plays an important role in optimization. Under the geometric Brownian motion 

model, the optimal investment and consumption problem with logarithmic utility function is studied by Kallsen 

and Muhle-Karbe[11] using the results of stochastic control theory, then shadow price was constructed by 

solving the free boundary problem. Some researchers have also studied in the form of logarithmic utility 

function[12] and power utility function[13]. 

In view of establishing and solving the utility maximization model simply, most of researches on shadow 

market focus on the assumption that there are only proportional transaction costs for the trade of risky assets in 

financial market. Most of the changes in the research only focus on the form of utility function, the form of the 

price process for risky assets, and the description for the financial market. Although the hypothesis of 

proportional transaction costs can be used to prove the existence of the solution to the utility maximization 

problem and to establish the duality problem simply, there is obviously a big difference between the hypothesis 

and the trading market in our real life. Therefore, it is of great significance to extend the proportional transaction 

costs to match our real market. 

The remainder of this article goes as follows. In Section 2 we formulate the utility maximization problem 

with semi-variable cost and prove the existence of its solution. In Section 3 we first present that shadow price 

can be constructed under semi-variable cost, then give the recurrence formula of the optimal strategy under the 

friction market. Section 4 is a case analysis in order to prove our conclusion. 

 

II. Utility maximization problem with semi-variable cost 
This section is to consider the problem of securities investment with semi variable cost. By using the basic 

theory of stochastic process, especially the properties and conclusions of martingale method, we prove that there 

is a unique optimal trading strategy for the problem of maximizing the expected utility of terminal wealth in this 

friction market through the estimation of total variation of self financing trading strategy. 

2.1 Construction of the wealth expected utility maximization model 

For the sake of simplicity, we consider a market only consisting of a riskless asset and a risky asset. The 

riskless asset has a constant price 1, and the trade of risky asset needs transaction costs. For example, an investor 

needs to pay a higher ask price S when buying, but only receives a lower bid price ,(   )   - when selling. 

Here   (   ) is proportional transaction cost rate, and C is a constant on behalf of the commission every time 

the investor trade assets in market. 

Assumption 2.1.1 The price of risky asset   (  )      is positive and Right Continuous with Left Limits, and 

is adapted to probability space(    (  )       ). Moreover,      and      . 
Remark 2.1.2 Throughout this paper, we assume that the price of risky asset S cannot jump at terminal time T, 

thus we have       and      , which means that the investor can also liquidate his position in risky assets 

at terminal time T. 
Definition 2.1.3 Trading strategy with semi-variable cost is an R

2
-valued, predictable, finite variation 

process  (  
    

 )     , where   
  describes the holdings in the riskless asset and   

  describes the holdings 

in the risky asset. 

During the whole paper, there is no additional capital in the process of investment except for initial 

investment, and no capital is moved out of the market. Thus the following definition of self-financing trading 

strategy can be well-defined: 
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Definition 2.1.4 A finite variation process trading strategy   (  
    

 )     for all         is called 

self-financing trading strategy which satisfies 

∫    
   

 

 

 ∫ ,(   )    -   
   

 

 

 ∫    
   

 

 

 ∫      
   

 

 

                                       

where   
   

and    
   

denote the holding of increase and decrease in riskless asset by investors, while    
   

and 

   
   

 denote the holding of increase and decrease in risky asset. 

In addition, we assume that every time the investor in this market cannot short any position, then we 

consider a utility maximization problem in this constraint. 

Assumption 2.1.5 Suppose that the investor’s preferences are modeled by a standard utility function     

 , which also satisfy the Inada conditions 

  ( )     
   

  ( )    n    ( )     
   

  ( )                                                  

Assumption 2.1.6 The utility function  satisfies the Reasonable Asymptotic Elasticity, i.e. 

  ( )      
   

    ( )     
   

   
   ( )

 ( )
                                                        

Remark 2.1.7 For the utility function U,   ( )    is a necessary and sufficient condition for the existence of 

the optimal trading strategy in the problem (4). In pr ctic l sense, the el stic function π (x) represents the r tio 

of marginal utility   ( ) to average utility  ( )   . 

Then the problem faced by an investor is to find an optimal trading strategy ̂  ( ̂ 
   ̂ 

 ) to maximize the 

expected utility of terminal wealth 

     , (  
    

 ,(   )    -)-    ( )                                                      

where  ( ) denotes the set of all self-financing trading strategies starting from initial endowment (  
    

 )  

(   ). 

If we define 

    
    

 ,(   )    -  

then we can rewrite 4 as 

     , ( )-    ( )                                                                         

where 

 ( )  *  
    

 ,(   )    -|   ( )+    
 ( )                                             

denotes the set of terminal wealth at time T after the investor liquidates his position in risky assets to riskless 

assets. 

So the primal problem for the investor is to maximize the expected utility of terminal wealth in the sense 

of semi-variable transaction costs 

 ( )       , ( )-      ( )                                                             

2.2Existence and uniqueness of solutions for the primal problem 

This subsection aims to prove the existence and uniqueness of solution for the problem 7 . 

First of all, we give the definition and property of option strong super-martingale in the sense of semi-

variable transaction costs: 

Definition 2.2.1 An option process   (  )      is called an option strong super-martingale, if for all stopping 

time         it satisfies 

 [     ]                                                                                     

in which we suppose that    is integrable. 

According to Doob-Meyer decomposition, an option process X is called an option strong super-martingale 

if and only if it can be decomposed into 

                                                                                           

where M is a local martingale as well as a super-martingale and A is an increasing predictable process. 

Lemma 2.2.2 Assume that   (     ) satisfied self-financing trading strategies in the sense of semi-variable 

costs. Fix risky asset process S as above, suppose that there is a price process  ̃  which satisfies  ̃  

,(   )       -, and there exists a probability measure Q such that  ̃  is a martingale under Q. Then for all 

stopping time        the process 
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 ̃( )    
 
   

 
  ̃                                                                             

is an option strong super-martingale under Q. 

Proof: As what we have discussed, we should proof that  ̃( ) can be decomposed as in 9 . 

According to the definition, we have 

   ̃( )  (   
   ̃    

 )    
   ̃                                                               

so that 

 ̃( )  ∫ (   
   ̃    

 )
 

 

 ∫   
   ̃ 

 

 

                                                        

We may use self-financial trading strategies 

,
   

    ,(   )    -   
   

   
         

    

for the first term of 12 so that there exists    
       

   (   )   
   

, which is a decrease process. And 

for the second term of 12 , it defines a martingale under Q measure as  ̃ is so. Hence 12 is an optional 

strong super-martingale.                                                                                                                                         □ 

In Definition 2.1.3, we assume that trading strategies   (  
    

 )      have finite variation. Our next 

lemma 2.2.3 proves that this assumption goes true. 

Lemma 2.2.3 Assume that   (     ) satisfied self-financing trading strategies in the sense of semi-variable 

costs. Fix risky asset process S as above, suppose that there is a price process  ̃  which satisfies  ̃  

,(   )       -, and there exists a probability measure Q such that  ̃  is a martingale under Q. Then the total 

variation of   remains bounded in   (     ). 

Proof: We can rewrite              and              as the sum of two increasing functions, 

respectively. Fix      , we define a new process    by 

   ((  )  (  ) )  (  
  

(    )  

(   )    
  

      
   )  

Obviously,    is also a self-financing process under transaction costs (      ) , and 
(    )  

(   )    
  

   
 is the 

amount that the investor can get more under transaction costs(      ) than in(     ). 

By Lemma 2.2.2 we can find that 

((  )  (  )  ̃ )      (  
  

(    ) ̃ 

(   ) ̃   
  

      
    ̃ )

     

 

is an optional strong super-martingale. Hence at terminal time T we have 

  [  
    

  ̃ ]    *
(    ) ̃ 

(   ) ̃   
  

   +                                                      

in which 

  *
(    ) ̃ 

(   ) ̃   
  

   +  
(    )

   
[     *

 

(   ) ̃   
  

   +]                               

Because the investor liquidate his position in risky assets at terminal time T, then we have in 13 that 

  
   . So 13 can be rewritten as 

  *
(    ) ̃ 

(   ) ̃   
  

   +     

hence we have 

  *
 

(   ) ̃   
  

   +  
  

    

   
(    ) 

   

 
(   )  (    )

(    ) 
                                      

On the other hand, 15 can be rewritten as 

  *
 

(   ) ̃   
  

   +    *
 

(   ) ̃   
+  [  

   ]                                       
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where  and    denote the variance of
 

(   ) ̃   
 and   

   
, respectively. If we denote   [ ̃ ]    and    [ ̃ ]  

  , then by Taylor series expansion at   [ ̃ ], we have 

  *
 

(   ) ̃   
+  

 

(   )  [ ̃ ]   
 

 (   ) 

[(   )  [ ̃ ]   ]
  

  

 
  

For 15 and the properties of we have 

     
    0

 

(   ) ̃   
1   [  

   ]

    

  

where  denotes the correlation coefficient. Therefore 

  [  
   ]  

      

  0
 

(   ) ̃   
1
  

Note that   
    

      
     , we just have   [  

   ]    [  
   ]. Then 

  [  
      

   ]   
      

  0
 

(   ) ̃   
1
                                                         

Finally if we use Chebyshev's inequality, we can easily get that 

 [  
      

      ]     

As for the total variation of   
 , from the self-financial strategies we have 

   
    

   
   

  

                                                                                

By the assumption that    is strictly positive, we can control   
   

 by 18 and estimate   
   

 by 17 . Finally 

we can control   
   

 just using   
      

      
    

 .                                                                                       □ 

Our next lemma proves the set of trading strategies is closed. 

Lemma 2.2.4 Under Assumption 2.1.1, the set  ( ) is closed in   
 . 

Proof: As what has been showed in Lemma2.2.3and the fact that investor cannot short any position at any time 

in this financial market,   
 and   

  are bounded in   
 . 

Let {  
   }

   

 
 be a nonnegative sequence in  ( ) converging to some nonnegative   

    
 . We have to 

show   
   ( ). We can find self-financing strategies   (  

      
   )

     
, which start at   

  (   ) and 

end with   
  (  

     ) at terminal time T. Then these processes can be decomposed into   
      

      

  
     

. Just as what we have showed in Lemma 2.2.3, (  
     )

   

 
and (  

     )
   

 
as well as their convex 

combinations are bounded in   
 . By Lemma A1.1a in [14] we can find convex combinations converging a.s. to 

elements   
   

and   
   

. Therefore we have 

  
    

      
     ( )  

In addition, for each rational time   ,   ) , assume that (  
     )

   

 
, (  

     )
   

 
, (  

     )
   

 
 and 

(  
     )

   

 
converge to some elements  ̃ 

   
,  ̃ 

   
,  ̃ 

   
 and  ̃ 

   
. By passing to a diagonal subsequence, we can 

suppose that this convergence holds true for all rational time   ,   ) , and the four limit processes are 

increasing and bounded in   
 . 

So if we define the process (  
    

 )     as (  
      

      
      

   )
     

, it is easy to see that this is 

predictable, nonnegative and satisfies the self-financing conditions because the processes (  )   
  is 

convergence for all   ,   -.                                                                                                                                □ 

Finally we give a proof of existence and uniqueness of solutions for the primal problem. 

Theorem 2.2.5 Assume that the utility function satisfies Assumption 2.1.5, the price process of risky asset 

satisfies Assumption 2.1.1. Moreover, we assume 

 ( )     

then the solution of utility maximization problem 7  ̂   ( )exists and uniqueness. 

Proof: The uniqueness of the solution is given by contradiction. 
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If there are two solutions for the utility maximization problem, suppose they are  ̂ and  ̂ which belong to 

 ( ). So for every   ,   -, [  ̂  (   ) ̂], which is the convex combination of  ̂ and  ̂, should belong to 

 ( ). However, since utility function U is concave, we have 

 [ (  ̂  (   ) ̂)]    [ ( ̂)]  (   ) , ( ̂)- 

   [ ( ̂)]   , ( ̂)-    , ( ̂)-   , ( ̂)-  

which is contradiction to the optimality of  , ( ̂)-. 

Next we prove the existence of the solution to the utility maximization problem. 

First of all, since  ( )   , we can find a maximizing sequence *  +     ( ), in other words, 

 ( )     
   

 , (  )-  

If we pass to a sequence of convex combinations         (              ), by Lemma A1.1a in [14] and 

Lemma 2.2.4, we can suppose that    converges to  ̂   ( ). 

So we can also prove that  ̂ is the solution to 7 by contradiction. If not, there exists a   (   - such 

that 

   ( )   , ( ̂)-     

Assume that   and    are two disjoint sets. By Lemma 3.16 in [15], there exists 

 1  (  )     in   and  (  )      in   ; 

 2  [ (  )   
]      and  [ (  )   

]     ; 

 3  [ (  )   (     )]   , ( ̂)-    and  [ (  )   (     )]   , ( ̂)-     

Then we have 

 [ (
     

 
)]   [ (

     

 
)  (     )]   [ (

     

 
)    (     )]  

On the other hand, from Assumption 2.1.6 there exists    that  .
 

 
/  

 

 
 ( ). Then 

 [ (
     

 
)  (     )]  

 

 
 [ (     ) (     )]   (   )                                 

In addition, since U is concave, then 

 [ (
     

 
)    (     )]  

 

 
{ [ (  )   (     )]   [ (  )   (     )]} 

  , ( ̂)-                                                                            20  

From 19 and 20 we have 

 [ (
     

 
)]   , ( ̂)-    , (   )   (   )-  

Since   can be arbitrarily small, we can assume , (   )   (   )-  is positive. But    is a maximizing 

sequence and  ( )   , ( ̂)-    is supremum, so it appears a contradiction, which means we have proved  ̂ is 

the solution to 7 .                                                                                                                                              □ 

 

III. Utility maximization problem in shadow market 
In this section, we first introduce the notion and then establish the shadow market which can produce the same 

maximum utility with the market in semi-variable cost. From the property of the shadow market and the friction 

market, we finally give the analytical formula for the original problem with semi-variable cost. 

3.1 Modeling of shadow problem 

In the market with transaction cost, consistent price system plays an important role. In order to establish 

the shadow problem and to solve the utility maximization problem with semi-variable cost, we first give the 

definition of consistent price systems as follows: 

Definition 3.1.1 Assume that the price process of risky asset satisfies Assumption 2.1.1. Under semi-variable 

cost, a pair  ̃   is called a consistent price system if it satisfies 

 1  ̃ takes value in the bid and ask spread ,(   )       -  

 2  ̃ is a martingale under Qmeasure. 

In addition,  ̃ can be also written as the ratio of two super-martingales. In other words, for all   ,   -, 
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 ̃   
  
 

  
  ,(   )       -                                                             

and the set of all consistent price systems is denoted by   . 

Assumption 3.1.2 Under transaction costs (      ) in trading one risky asset, for some       , we have 

     . 

Next we consider constructing a market with one zero interest rate bond and an risky asset whose price 

process is  ̃: 

Definition 3.1.3 An R
2
-valued, predictable, finite variation process ̃  ( ̃ 

   ̃ 
 )      is called a self-financing 

trading strategy in frictionless market, if for all      ,  ̃ 
  is integrable under  ̃ and 

 ̃ 
   ̃ 

  ̃    ∫  ̃ 
   ̃ 

 

 

  

We also assume in frictionless market that no assets can be shorted, so the shadow problem is established 

by all acceptable strategies defined as follows: 

Definition 3.1.4 Aprocess ̃is called acceptable,if for all      , we have 

 ̃ 
         ̃ 

     

Therefore, the shadow problem can be written as 

     , ( ̃)-  ̃   ̃( )                                                              22  

where 

 ̃( )  * ̃| ̃  ( ̃ 
   ̃ 

 )   ̃( )+    
 ( ) 

denotes the terminal wealth for the investor in frictionless market at time T, and  ̃   ̃ 
   ̃ 

  ̃ . In addition, 

 ̃( ) denotes the set of all acceptable strategies starting from initial wealth ( ̃ 
   ̃ 

 )  (   ). 

Lemma 3.1.5 Assume     . Then for all       we have 

 ̃ 
   ̃ 

  ̃    
    

  ̃                                                                      

Proof: For every (     )    ( ), using the integration by parts formula we have 

  
    

  ̃    ∫    
 

 

 

 ∫   
   ̃ 

 

 

 ∫  ̃    
 

 

 

   ∫   
   ̃ 

 

 

  

if we define 

{
 ̃ 

     
  ∫   

   ̃ 

 

 

   
  ̃  

 ̃ 
     

  

                                                              

then 

 ̃ 
   ̃ 

  ̃    ∫   
   ̃ 

 

 

   
    

  ̃   

which means Lemma 3.1.5 has been proved.                                                                                                         □ 

Note that for every     , we have  ( )   ̃( ). Thus if we define 

 ̃( )       , ( ̃)- ̃   ̃( )                                                                   

and compare with Lemma 3.1.5, then 

 ( )   ̃( )                                                                                   

which means that transactions in frictionless market are always better than that in friction market. Hence we 

consider a proper price process  ̂ which can let inequality in 26 becomes equality. If so, the process is called 

shadow price. 

Definition 3.1.6 Assume that consistent price system exists. Fixed the initial wealth x, the price process  ̂   
 ̂ 

 ̂  

is called shadow price, if there exists 

   
   ( )

 , ( )-     
 ̃  ̃( )

 , ( ̃)-                                                                   

Next we shall first prove that shadow price exists and then construct it under semi-variable transaction 

costs. 

Let V denotes the convex conjugate function of U defined by 
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 ( )      
   

* ( )    +       

then V is strictly decreasing, convex and continuously differentiable and satisfies 

  ( )       ( )     ( )     ( )   。 

By definition, 

 (  
 )      

   
* ( ̃)    

  ̃+  

For every  ̃   ̃( ) under consistent price system, 

 , ( ̃)-   , (  
 )-   ,(  

  ̃)-                                                             

By Lemma 4.1 in [7],    is a super-martingale process, thus we have 

 [ ̂ 
  ̂]   ̂ 

                                                                                    

So if there exists shadow price, then Lemma 4.1.10 should exist first: 

Lemma 3.1.7 Let Assumption 2.1.1, 2.1.5, 2.1.6 and 3.1.2 hold. Then there exists  ̂     such that 

 1  ̂ 
    ( ̂); 

 2  [ ̂ 
  ̂]   ̂ 

  . 

Proof: For each      , we have  (  )   , (  ̂)-. Note that u is concave, so 

 ̂ 
 (    )   ( )   (  )   , ( ̂)-   , (  ̂)-  

Then by the property of utility function U, we have 

 ̂ 
    ,  ( ̂) ̂-   [ ̂ 

  ̂]                                                                    

Compared 29 with 30 we prove Lemma 3.1.7.                                                                                          □ 

Theorem 3.1.8 The consistent price system which satisfies Lemma 3.1.7 defines the shadow price  ̂. 

Proof: By Lemma 3.1.5 and Lemma 3.1.7 we have 

 ̃( )   ( )   , ( ̂)-   [ ( ̂ 
 )   ̂ 

  ̂]   [ ( ̂ 
 )]   ̂ 

                                     

By 29 we also have 

 [ ( ̂ 
 )]   ̂ 

    , ( ̃)-   ̃( )                                                             

Compared 31 with 32 we complete the proof of Theorem 3.1.8.                                                               □ 

Remark 3.1.9 As has been proved above, if shadow price indeed exists, then the optimal strategy  ̃ for the 

utility maximization problem in frictionless market is also the optimal strategy for the problem in friction 

market. Hence shadow price  ̂ is the least favorable price in frictionless market. Thus the optimal strategy  ̂ in 

friction market only trades when  ̂ is at bid or ask price, in other words, 

*  ̂ 
   +  { ̂    } n *  ̂ 

   +  { ̂  (   )    }  

3.2The expression of shadow price 

This subsection gives the expression of shadow price. First we give the definition of  ̃  ( ̃ 
   ̃ 

 )
     

, then 

because the shadow price should satisfy the consistent price system, we finally prove this conclusion. 

Firstly, we give the following dynamic programming principle similar to Section 7 in [10]. 

Definition 3.2.1 For every self-financing trading strategy   (     ), define its value function as 

 (  )          
    

  [ ( )   ]                                                                

where   is the set of all self-financing trading strategies under semi-variable cost and no short selling constraint 

for each asset in   ,   -. 

Lemma 3.2.2 For every optimal strategy  ̂in        , the value function is a martingale, i.e. 

 ( ̂ )   [ ( ̂ )   ]  

Proposition 3.2.3 Define 

{
 

  ̃ 
      

   

 ( ̂ 
     ̂ 

 )   ( ̂ 
   ̂ 

 )

 
 

 ̃ 
      

   

 ( ̂ 
   ̂ 

   )   ( ̂ 
   ̂ 

 )

 
 

                                                      

on      , and 
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,
 ̃ 
     ( ̂ ) 

 ̃ 
     ( ̂ ),(   )    - 

                                                              

at terminal time T. 

Then for all      ,  ̃ is Right Continuous with Left Limits and is a martingale. In addition,  ̃ satisfies 

,(   )    -  
 ̃ 
 

 ̃ 
                                                                       

which means  ̃ 
   ̃ 

  is the shadow price under semi-variable cost. 

Proof: Firstly, assume that        . By Definition 3.2.1 and the property of U as a concave function, we 

have 

 ([
  
  

( ̂ 
    )  (  

  
  

)]  ̂ 
   ̂ 

 )  
  
  

 (( ̂ 
    )  ̂ 

 )  (  
  
  

)  ( ̂ 
   ̂ 

 )  

which can be also written as 

 ( ̂ 
      ̂ 

 )   ( ̂ 
   ̂ 

 )

  
 

 ( ̂ 
      ̂ 

 )   ( ̂ 
   ̂ 

 )

  
  

Since  ̃ 
  is the limit of an increasing sequence, it is well-defined, and so on with  ̃ 

 . 

Next, since the set of trading strategies    in 33 is directed upwards, then 33 can be rewritten by 

 ( ̂     )          
    

 ̂
  [ ( )   ]     

   
 [ (  )   ]   

where (  )    is the increasing sequences in  
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, and for simplicity 
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Then, we may prove that  ̃ is super-martingale. Clearly   
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 for all        , so 
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By the monotone convergence theorem, 
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Hence by definition of  ̃ 
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And we still have to verify that  ̃ is also super-martingale when    . 

By the monotone convergence theorem again, we have 
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As for  ̃ 
 , because of  ( )   , we have 
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Hence  ̃ is super-martingale. 

Finally, we show that the ratio of  ̃ 
   ̃ 

  is bounded between bid and ask price. 

By definition of  ̃, this conclusion is obviously at terminal time T. 

For all   ,   ), let (  
 )    be a partition of,   ). For each    , on every set       

     

    
  we have 
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Therefore 
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By the monotone convergence theorem, 
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When     we have 
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On the other hand, on every set       
         

  again we have 
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Following the same steps we finally get 
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Last but not least, if we define 

,
 ̂ 
      

   
 ̃ 
        

 ̂ 
    ̃ 

                  
                                                                    

then by Proposition 1.3.14(i) in [17] we know that  ̂ 
   ̂ 

  is a super-martingale and Right Continuous with Left 

Limits process, which is bounded between bid and ask price. Hence it defines the shadow price under semi-

variable transaction cost.                                                                                                                                        □ 

3.3The optimal strategy for the friction problem 

Assume that in frictionless market, the price process of risky asset satisfies Geometric Brownian motion, i.e. 

  ̃    ̃      ̃      

where  denotes the instantaneous expected rate of return of risky asset,   denotes the instantaneous volatility, 

and    denotes the standard Brownian motion. 

Let    denotes the proportion of risky asset in total assets at any time t, i.e. 

   
 ̃ 

  ̃ 

 ̃ 
   ̃ 

  ̃ 

                                                                                 

where  ̃  denotes the price of risky asset in frictionless market. Then by Lemma 3.1 in [18] the optimal 

proportion of risk asset in total assets should be 

   
 

  
                                                                                       

By 38 and 39 we have 
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Because the risky asset in frictionless market only trades when  ̃  (   )    , so we have 
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Finally by 24 we get 
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which is the analytical formula for the original problem under semi-variable cost. 
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IV. Case analysis 
This section gives an example in order to verify the rationality and effectiveness of our conclusion about shadow 

price under semi-variable cost. 

Assume that there are only one riskless asset and one risky asset in the market. The riskless asset is zero 

interest rate and the price of risky asset is given as follows: 

   {
   (   

 

 
)      

 

 
 

                       
 

 
     

                                                                  

where(  )   is a Brownian motion on a filtered probability space(    (  )       ). 

Fix proportional transaction cost rate   (   ) and the constant transaction cost C, assume the initial 

wealth of the investor is    , which belongs to the riskless asset at    . 

In addition, from the definition of shadow price, for every   ,   -, we have 
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By 44 , we have optimal strategy under semi-variable cost 

( ̂   ̂ )  
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.(   )        /  
 

 
     

                                             

According to 45 , we calculate the utility of terminal wealth, and find that the utility in friction market 

and in frictionless market are the same, hence 45 is indeed the optimal strategy under semi-variable cost. 

We can also know from 44 that with the increase of the price for risky assets with transaction costs, 

the shadow price will also increase; in addition, with the increase of the fixed cost C and the fixed proportional 

coefficient , the shadow price will decrease. 

 

 

Figure 1: The relationship between shadow price  ̃ and transaction cost rate  

Figure 1 is the change of shadow price for every 10% increase of transactioncost rate. With the increase of 

transaction cost rate , shadow price ̃decreases gradually. 
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Figure 2: The relationship between shadow price  ̃ and fixed cost C 

Figure 2 is the change of shadow price for every 10% increase of fixedcost C. With the increase of fixed 

cost C, shadow price  ̃ decreases gradually. 

 

 

Figure 3: The relationship between shadow price  ̃ and the price of security in friction market    

Figure 3 is the change of shadow price for every 10% increase of the priceof security in friction market   . 

With the incre se of the price of securityin friction m rket St, sh  ow price ˜S  lso incre ses  

 

V. Conclusion 
Based on real market transactions, we consider an asset allocation problem in the form of semi-variable 

transaction costs, and prove the existence of shadow price. Then we give the analytical formula for the problem 

with friction under the property of shadow price with the price of security in friction market. Our conclusion 

provides another way to solve the expected utility maximization problem with constraints. 
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